Microbond tests have been widely used for studying the interfacial mechanical properties of fiber-reinforced composites. However, experimental results reveal that the interfacial shear strength (IFSS) depends on the length of microdroplet-embedded fiber (le). Thus, it is essential to provide an insight into this size effect on IFSS. In this paper, microbond tests are conducted for two kinds of widely used composites, i.e., glass fiber/epoxy matrix and carbon fiber/epoxy matrix. The lengths of microdroplet-embedded glass fiber and carbon fiber are in the ranges from 114.29 µm to 557.14 µm and from 63.78 µm to 157.45 µm, respectively. We analyze the representative force–displacement curves, the processes of interfacial failure and frictional sliding, and the maximum force and the frictional force as functions of le. Experimental results show that IFSS of both material systems monotonically decreases with le and then approaches a constant value. The finite element model is used to analyze the size effect on IFSS and interfacial failure behaviors. For both material systems, IFSS predicted from simulations is consistent with that obtained from experiments. Moreover, by analyzing the shear stress distribution, a transition of interface debonding is found from more or less uniform separation to crack propagation when le increases. This study reveals the mechanism of size effect in microbond tests, serving as an effective method to evaluate the experimental results and is critical to guidelines for the design and optimization of advanced composites.

References

References
1.
Jacobasch
,
H. J.
,
Grundke
,
K.
,
Uhlmann
,
P.
,
Simon
,
F.
, and
Mäder
,
E.
,
1996
, “
Comparison of Surface Chemical Methods for Characterizing Carbon Fiber Epoxy Resin Composites
,”
Compo. Interface
,
3
(
4
), pp.
293
320
.
2.
Yang
,
L.
, and
Thomason
,
J. L.
,
2010
, “
Interface Strength in Glass Fibre–Polypropylene Measured Using the Fibre Pull-out and Microbond Methods
,”
Compos. Part A-Appl. S
,
41
(
9
), pp.
1077
1083
.
3.
Thomason
,
J. L.
, and
Yang
,
L.
,
2014
, “
Temperature Dependence of the Interfacial Shear Strength in Glass–Fibre Epoxy Composites
,”
Compos. Sci. Technol.
,
96
, pp.
7
12
.
4.
Miller
,
B.
,
Muri
,
P.
, and
Rebenfeld
,
L.
,
1987
, “
A Microbond Method for Determination of the Shear Strength of a Fiber/Resin Interface
,”
Compos. Sci. Technol.
,
28
(
1
), pp.
17
32
.
5.
Zhandarov
,
S.
, and
Mäder
,
E.
,
2005
, “
Peak Force as Function of the Embedded Length in Pull-out and Microbond Tests: Effect of Specimen Geometry
,”
J. Adhes. Sci. Technol.
,
19
(
10
), pp.
817
855
.
6.
Zhandarov
,
S.
, and
Mäder
,
E.
,
2015
, “
Estimation of the Local Interfacial Strength Parameters of Carbon Nanotube Fibers in an Epoxy Matrix From a Microbond Test Data
,”
Carbon
,
86
, pp.
54
57
.
7.
Nian
,
G.
,
Li
,
Q.
,
Xu
,
Q.
, and
Qu
,
S.
,
2018
, “
A Cohesive Zone Model Incorporating a Coulomb Friction Law for Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
157
, pp.
195
201
.
8.
Ash
,
J. T.
,
Cross
,
W. M.
,
Svalstad
,
D.
,
Kellar
,
J. J.
, and
Kjerengtroen
,
L.
,
2003
, “
Finite Element Evaluation of the Microbond Test Meniscus Effect, Interphase Region, and Vise Angle
,”
Compos. Sci. Technol.
,
63
(
5
), pp.
641
651
.
9.
Kang
,
S.-K.
,
Lee
,
D.-B.
, and
Choi
,
N.-S.
,
2009
, “
Fiber/Epoxy Interfacial Shear Strength Measured by the Microdroplet Test
,”
Compos. Sci. Technol.
,
69
(
2
), pp.
245
251
.
10.
Pandey
,
G.
,
Kareliya
,
C. H.
, and
Singh
,
R. P.
,
2011
, “
A Study of the Effect of Experimental Test Parameters on Data Scatter in Microbond Testing
,”
J. Compos. Mater
,
46
(
3
), pp.
275
284
.
11.
Zhi
,
C.
,
Long
,
H.
, and
Miao
,
M.
,
2017
, “
Influence of Microbond Test Parameters on Interfacial Shear Strength of Fiber Reinforced Polymer-Matrix Composites
,”
Compos. Part A-Appl. S
,
100
, pp.
55
63
.
12.
Needleman
,
A.
,
1987
, “
A Continuum Model for Void Nucleation by Inclusion Debonding
,”
ASME J. Appl. Mech.
,
54
(
3
), pp.
525
531
.
13.
Needleman
,
A.
,
1990
, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fracture
,
42
(
1
), pp.
21
40
.
14.
Zhong
,
D.
,
Liu
,
J.
,
Xiang
,
Y.
,
Yin
,
T.
,
Hong
,
W.
,
Yu
,
H.
,
Qu
,
S.
, and
Yang
,
W.
,
2019
, “
Effect of Partition on the Mechanical Behaviors of Soft Adhesive Layers
,”
ASME J. Appl. Mech.
,
86
(
6
), p.
061003
.
15.
Takeda
,
N.
,
Song
,
D. Y.
,
Nakat
,
K.
, and
Shioya
,
T.
,
1994
, “
The Effect of Fiber Surface Treatment on the Micro Fracture Progress in Glass Fiber/Nylon 6 Composites
,”
Compo. Interface
,
2
(
2
), pp.
143
155
.
16.
Piggott
,
M. R.
,
1997
, “
Why Interface Testing by Single-Fibre Methods can be Misleading
,”
Compos. Sci. Technol.
,
57
(
8
), pp.
965
974
.
17.
Pisanova
,
E.
,
Dutschk
,
V.
, and
Lauke
,
B.
,
1998
, “
Work of Adhesion and Local Bond Strength in Glass Fibre-Thermoplastic Polymer Systems
,”
J. Adhes. Sci. Technolo.
,
12
(
3
), pp.
305
322
.
18.
Auvray
,
M. H.
,
Chéneau-Henry
,
P.
,
Leroy
,
F. H.
, and
Favre
,
J. P.
,
1994
, “
Pull-out Testing of Carbon/Bismaleimide Systems in the Temperature Range 20–250 °C
,”
Composites
,
25
(
7
), pp.
776
780
.
19.
Zhandarov
,
S. F.
,
Mäder
,
E.
, and
Yurkevich
,
O. R.
,
2002
, “
Indirect Estimation of Fiber/Polymer Bond Strength and Interfacial Friction From Maximum Load Values Recorded in the Microbond and Pull out Tests. Part I: Local Bond Strength
,”
J. Adhes. Sci. Technol.
,
16
(
9
), pp.
1171
1200
.
20.
Zhandarov
,
S.
, and
Mäder
,
E.
,
2005
, “
Characterization of Fiber/Matrix Interface Strength: Applicability of Different Tests, Approaches and Parameters
,”
Compos. Sci. Technol.
,
65
(
1
), pp.
149
160
.
21.
Zhandarov
,
S.
, and
Mäder
,
E.
,
2014
, “
An Alternative Method of Determining the Local Interfacial Shear Strength From Force–Displacement Curves in the Pull-out and Microbond Tests
,”
Int. J. Adhes. Adhes
,
55
, pp.
37
42
.
22.
Schüller
,
T.
,
Beckert
,
W.
,
Lauke
,
B.
, and
Perche
,
N.
,
1999
, “
Analytical and Numerical Calculation of the Energy Release Rate for the Microbond Test
,”
J. Adhesion
,
70
(
1–2
), pp.
33
56
.
23.
Nairn
,
J. A.
,
2000
, “
Analytical Fracture Mechanics Analysis of the Pull-out Test Including the Effects of Friction and Thermal Stresses
,”
Adv. Compos. Lett.
,
9
(
6
), pp.
373
383
.
24.
Mendels
,
D. A.
,
Leterrier
,
Y.
,
Manson
,
J. A. E.
, and
Nairn
,
J. A.
,
2002
, “
The Influence of Internal Stresses on the Microbond Test II: Physical Aging and Adhesion
,”
J. Compos. Mater.
,
36
(
14
), pp.
1655
1676
.
25.
Zhandarov
,
S.
, and
Mäder
,
E.
,
2016
, “
Determining the Interfacial Toughness From Force–Displacement Curves in the Pull-out and Microbond Tests Using the Alternative Method
,”
Int. J. Adhes. Adhes
,
65
, pp.
11
18
.
26.
Zhandarov
,
S.
,
Gorbatkina
,
Y.
, and
Mäder
,
E.
,
2006
, “
Adhesional Pressure as a Criterion for Interfacial Failure in Fibrous Microcomposites and Its Determination Using a Microbond Test
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
2610
2628
.
27.
Jia
,
Y.
,
Yan
,
W.
, and
Liu
,
H.-Y.
,
2012
, “
Carbon Fibre Pullout Under the Influence of Residual Thermal Stresses in Polymer Matrix Composites
,”
Comp. Mater. Sci.
,
62
, pp.
79
86
.
28.
Sockalingam
,
S.
,
Dey
,
M.
,
Gillespie
,
J. W.
, Jr.
, and
Keefe
,
M.
,
2014
, “
Finite Element Analysis of the Microdroplet Test Method Using Cohesive Zone Model of the Fiber/Matrix Interface
,”
Compos. Part A-Appl. S.
,
56
, pp.
239
247
.
29.
Minnicino
,
A. M.
, and
Santare
,
M. H.
,
2012
, “
Modeling the Progressive Damage of the Microdroplet Test Using Contact Surfaces With Cohesive Behavior
,”
Compos. Sci. Technol.
,
72
(
16
), pp.
2024
2031
.
30.
Nian
,
G.
,
Shan
,
Y.
,
Xu
,
Q.
,
Qu
,
S.
, and
Yang
,
Q.
,
2016
, “
Failure Analysis of Syntactic Foams: A Computational Model with Cohesive Law and XFEM
,”
Compos. Part B-Eng.
,
89
, pp.
18
26
.
31.
Ghareeb
,
A.
, and
Elbanna
,
A.
,
2018
, “
On the Role of the Plaque Porous Structure in Mussel Adhesion: Implications for Adhesion Control Using Bulk Patterning
,”
J. Appl. Mech.
,
85
(
12
), p.
121003
.
32.
Avellar
,
L.
,
Reese
,
T.
,
Bhattacharya
,
K.
, and
Ravichandran
,
G.
,
2018
, “
Effect of Cohesive Zone Size on Peeling of Heterogeneous Adhesive Tape
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121005
.
33.
Adams
,
G. G.
,
2019
, “
A Crack Close to and Perpendicular to an Interface: Resolution of Anomalous Behavior With a Cohesive Zone
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031008
.
You do not currently have access to this content.