This paper presents a conforming augmented finite element method (C-AFEM) that can account for arbitrary cracking in solids with similar accuracy of other conforming methods, but with a significantly improved numerical efficiency of about ten times. We show that the numerical gains are mainly due to our proposed new solving procedure, which involves solving a local problem for crack propagation and a global problem for structural equilibrium, through a tightly coupled two-step process. Through several numerical benchmarking examples, we further demonstrate that the C-AFEM is more accurate and mesh insensitive when compared with the original A-FEM, and both C-AFEM and A-FEM are much more robust and efficient than other parallel methods including the extended finite element method (XFEM)/generalized finite element (GFEM) and the conforming embedded discontinuity method.

References

References
1.
Cox
,
B. N.
, and
Yang
,
Q. D.
,
2006
, “
In Quest of Virtual Tests for Structural Composites
,”
Science
,
314
(
5802
), pp.
1102
1107
.
2.
Kachanov
,
M.
,
1986
,
Introduction to Continuum Damage Mechanics
,
Springer
,
New York
.
3.
Van de Meer
,
F. P.
, and
Sluys
,
L. J.
,
2009
, “
Continuum Models for the Analysis of Progressive Failure in Composite Laminates
,”
J. Compos. Mater.
,
43
(
20
), pp.
2131
2156
.
4.
Melenk
,
J. M.
, and
Babuška
,
I.
,
1996
, “
The Partition of Unity Finite Element Method: Basic Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
289
314
.
5.
Strouboulis
,
T.
,
Babuska
,
I.
, and
Copps
,
K.
,
2000
, “
The Design and Analysis of the Generalized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
181
(
1–3
), pp.
43
69
.
6.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
,
1999
, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
,
46
(
1
), pp.
131
150
.
7.
Hansbo
,
A.
, and
Hansbo
,
P.
,
2004
, “
A Finite Element Method for the Simulation of Strong and Weak Discontinuities in Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
33–35
), pp.
3523
3540
.
8.
Song
,
J. H.
,
Areias
,
P. M. A.
, and
Belytschko
,
T.
,
2006
, “
A Method for Dynamic Crack and Shear Band Propagation with Phantom Nodes
,”
Int. J. Numer. Methods Eng.
,
67
(
6
), pp.
868
893
.
9.
Ling
,
D. S.
,
Yang
,
Q. D.
, and
Cox
,
B.
,
2009
, “
An Augmented Finite Element Method for Modeling Arbitrary Discontinuities in Composite Materials
,”
Int. J. Fract.
,
156
(
1
), pp.
53
73
.
10.
Chen
,
B. Y.
,
Pinho
,
S. T.
,
De Carvalho
,
N. V.
,
Baiz
,
P. M.
, and
Tay
,
T. E.
,
2014
, “
A Floating Node Method for the Modelling of Discontinuities in Composites
,”
Eng. Fract. Mech.
,
127
, pp.
104
134
.
11.
Alfaiate
,
J.
,
Wells
,
G. N.
, and
Sluys
,
L. J.
,
2002
, “
On the Use of Embedded Discontinuity Elements With Crack Path Continuity for Mode-I and Mixed-Mode Fracture
,”
Eng. Fract. Mech.
,
69
(
6
), pp.
661
686
.
12.
Ibrahimbegovic
,
A.
, and
Melnyk
,
S.
,
2007
, “
Embedded Discontinuity Finite Element Method for Modeling of Localized Failure in Heterogeneous Materials With Structured Mesh: An Alternative to Extended Finite Element Method
,”
Comput. Mech.
,
40
(
1
), pp.
149
155
.
13.
Sluys
,
L. J.
, and
Berends
,
A. H.
,
1998
, “
Discontinuous Failure Analysis for Mode-I and Mode-II Localization Problems
,”
Int. J. Solids Struct.
,
35
(
31–32
), pp.
4257
4274
.
14.
Linder
,
C.
, and
Armero
,
F.
,
2009
, “
Finite Elements With Embedded Branching
,”
Finite Elem. Anal. Des.
,
45
(
4
), pp.
280
293
.
15.
Linder
,
C.
, and
Armero
,
F.
,
2007
, “
Finite Elements With Embedded Strong Discontinuities for the Modeling of Failure in Solids
,”
Int. J. Numer. Methods Eng.
,
72
(
12
), pp.
1391
1433
.
16.
Dias-da-Costa
,
D.
,
Alfaiate
,
J.
,
Sluys
,
L. J.
, and
Julio
,
E.
,
2009
, “
Towards a Generalization of a Discrete Strong Discontinuity Approach
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
47–48
), pp.
3670
3681
.
17.
Liu
,
W.
,
Yang
,
Q. D.
,
Mohammadizadeh
,
S.
, and
Su
,
X. Y.
,
2014
, “
An Efficient Augmented Finite Element Method for Arbitrary Cracking and Crack Interaction in Solids
,”
Int. J. Numer. Methods Eng.
,
99
(
6
), pp.
438
468
.
18.
Liu
,
W.
,
Yang
,
Q. D.
,
Mohammadizadeh
,
S.
,
Su
,
X. Y.
, and
Ling
,
D. S.
,
2013
, “
An Accurate and Efficient Augmented Finite Element Method for Arbitrary Crack Interactions
,”
ASME J. Appl. Mech.
,
80
(
4
), p. 041033.
19.
Liu
,
W.
,
Schesser
,
D.
,
Yang
,
Q. D.
, and
Ling
,
D. S.
,
2015
, “
A Consistency-Check Based Algorithm for Element Condensation in Augmented Finite Element Methods for Fracture Analysis
,”
Eng. Fract. Mech.
,
139
, pp.
78
97
.
20.
Jung
,
J.
, and
Yang
,
Q. D.
,
2017
, “
A two-Dimensional Augmented Finite Element for Dynamic Crack Initiation and Propagation
,”
Int. J. Fract.
,
203
(
1–2
), pp.
41
61
.
21.
Naderi
,
M.
,
Jung
,
J.
, and
Yang
,
Q. D.
,
2016
, “
A Three Dimensional Augmented Finite Element for Modeling Arbitrary Cracking in Solids
,”
Int. J. Fract.
,
197
(
2
), pp.
147
168
.
22.
Jung
,
J.
,
Do
,
B. C.
, and
Yang
,
Q. D.
,
2016
, “
Augmented Finite-Element Method for Arbitrary Cracking and Crack Interaction in Solids Under Thermo-Mechanical Loadings
,”
Philos. Trans. R Soc. A
,
374
(
2071
), p. 20150282.
23.
Naderi
,
M.
,
Apetre
,
N.
, and
Iyyer
,
N.
,
2017
, “
Effect of Interface Properties on Transverse Tensile Response of Fiber-Reinforced Composites: Three-Dimensional Micromechanical Modeling
,”
J. Compos. Mater.
,
51
(
21
), pp.
2963
2977
.
24.
Naderi
,
M.
, and
Iyyer
,
N.
,
2017
, “
3D Modeling of Arbitrary Cracking in Solids Using Augmented Finite Element Method
,”
Compos. Struct.
,
160
, pp.
220
231
.
25.
Dias-da-Costa
,
D.
,
Alfaiate
,
J.
,
Sluys
,
L.
,
Areias
,
P.
, and
Julio
,
E.
,
2013
, “
An Embedded Formulation With Conforming Finite Elements to Capture Strong Discontinuities
,”
Int. J. Numer. Methods Eng.
,
93
(
2
), pp.
224
244
.
26.
Gu
,
Y. C.
,
Jung
,
J.
,
Yang
,
Q. D.
, and
Chen
,
W. Q.
,
2015
, “
An Inertia-Based Stabilizing Method for Quasi-Static Simulation of Unstable Crack Initiation and Propagation
,”
ASME J. Appl. Mech.
,
82
(
10
), p.
101010
.
27.
Do
,
B. C.
,
Liu
,
W.
,
Yang
,
Q. D.
, and
Su
,
X. Y.
,
2013
, “
Improved Cohesive Stress Integration Schemes for Cohesive Zone Elements
,”
Eng. Fract. Mech.
,
107
, pp.
14
28
.
28.
Guido
,
D.
, and
Klaus
,
W.
,
2018
, “
Calculix: A Free Software Three-Dimensional Structural Finite Element Program
.” http://www.dhondt.de/. Accessed Nov. 20, 2018.
29.
Zi
,
G.
, and
Belytschko
,
T.
,
2003
, “
New Crack-tip Elements for XFEM and Applications to Cohesive Cracks
,”
Int. J. Numer. Methods Eng.
,
57
(
15
), pp.
2221
2240
.
30.
Carpinteri
,
A.
,
Valente
,
S.
,
Ferrara
,
G.
, and
Melchiorri
,
G.
,
1993
, “
Is Mode-II Fracture Energy a Real Material Property
,”
Comput. Struct.
,
48
(
3
), pp.
397
413
.
31.
Moës
,
N.
, and
Belytschko
,
T.
,
2002
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
,
69
(
7
), pp.
813
833
.
32.
de Borst
,
R.
,
Remmers
,
J. J. C.
, and
Needleman
,
A.
,
2006
, “
Mesh-Independent Discrete Numerical Representations of Cohesive-Zone Models
,”
Eng. Fract. Mech.
,
73
(
2
), pp.
160
177
.
33.
Nooru-Mohamed
,
M. B.
,
1992
, “
Mixed-Mode Fracture of Concrete: An Experimental Approach
,”
Ph.D. thesis
,
Delft University of Technology
.
34.
Gasser
,
T. C.
, and
Holzapfel
,
G. A.
,
2005
, “
Modeling 3D Crack Propagation in Unreinforced Concrete Using PUFEM
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
25–26
), pp.
2859
2896
.
35.
Ozbolt
,
J.
, and
Reinhardt
,
H. W.
,
2002
, “
Numerical Study of Mixed-Mode Fracture in Concrete
,”
Int. J. Fract..
,
118
(
2
), pp.
145
161
.
36.
De Borst
,
R.
,
1997
, “
Some Recent Developments in Computational Modelling of Concrete Fracture
,”
Int. J. Fract.
,
86
(
1–2
), pp.
5
36
.
This content is only available via PDF.
You do not currently have access to this content.