A general formula of Jacobian matrix is derived in an incremental harmonic balance (IHB) method for general nonlinear delay differential equations (DDEs) with multiple discrete delays, where the fast Fourier transform is used to calculate Fourier coefficients of partial derivatives of residuals. It can be efficiently and automatically implemented in a computer program, and the only manual work is to derive the partial derivatives, which can be a much easier task than derivation of Jacobian matrix. An advantage of the IHB method in stability analysis is also revealed here. A direct construction method is developed for stability analysis of nonlinear differential equations with use of a relationship between Jacobian matrix in the IHB method and the system matrix of linearized equations. Toeplitz form of the system matrix can be directly constructed, and Hill’s method is used to calculate Floquet multipliers for stability analysis. Efficiency of stability analysis can be improved since no integration is needed to calculate the system matrix. Period-doubling bifurcations and period-p solutions of a delayed Mathieu–Duffing equation are studied to demonstrate use of the general formula of Jacobian matrix in the IHB method and the direct construction method in stability analysis. Its solution is the same as that from the numerical integration method using the spectral element method in the DDE toolbox in matlab, and it has a high convergence rate for solving a delayed Van der Pol equation.

References

References
1.
Stepan
,
G.
,
1989
,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Longman Scientific & Technical
,
London
.
2.
Zang
,
H.
,
Zhang
,
T.
, and
Zhang
,
Y.
,
2014
, “
Stability and Bifurcation Analysis of Delay Coupled Van Der Pol–Duffing Oscillators
,”
Nonlinear Dyn.
,
75
(
1–2
), pp.
35
47
.
3.
Molnar
,
T. G.
,
Insperger
,
T.
, and
Stepan
,
G.
,
2016
, “
Analytical Estimations of Limit Cycle Amplitude for Delay-Differential Equations
,”
Electron. J. Qual. Theory Differ. Equ.
,
2016
(
77
), pp.
1
10
.
4.
Gilsinn
,
D. E.
,
2002
, “
Estimating Critical Hopf Bifurcation Parameters for a Second-Order Delay Differential Equation With Application to Machine Tool Chatter
,”
Nonlinear Dyn.
,
30
(
2
), pp.
103
154
.
5.
Dadi
,
Z.
,
Afsharnezhad
,
Z.
, and
Pariz
,
N.
,
2012
, “
Stability and Bifurcation Analysis in the Delay-Coupled Nonlinear Oscillators
,”
Nonlinear Dyn.
,
70
(
1
), pp.
155
169
.
6.
Phat
,
V. N.
, and
Niamsup
,
P.
,
2006
, “
Stability of Linear Time-Varying Delay Systems and Applications to Control Problems
,”
J. Comput. Appl. Math.
,
194
(
2
), pp.
343
356
.
7.
Mondie
,
S.
, and
Kharitonov
,
V. L.
,
2005
, “
Exponential Estimates for Retarded Time-Delay Systems: An LMI Approach
,”
IEEE Trans. Automat. Cont.
,
50
(
2
), pp.
268
273
.
8.
Deshmukh
,
V.
,
Butcher
,
E. A.
, and
Bueler
,
E.
,
2008
, “
Dimensional Reduction of Nonlinear Delay Differential Equations With Periodic Coefficients Using Chebyshev Spectral Collocation
,”
Nonlinear Dyn.
,
52
(
1
), pp.
137
149
.
9.
Cao
,
J.
, and
Wang
,
J.
,
2004
, “
Delay-Dependent Robust Stability of Uncertain Nonlinear Systems With Time Delay
,”
Appl. Math. Comput.
,
154
(
1
), pp.
289
297
.
10.
Iqbal
,
M.
,
Rehan
,
M.
, and
Hong
,
K.-S.
,
2018
, “
Robust Adaptive Synchronization of Ring Configured Uncertain Chaotic Fitzhugh–Nagumo Neurons Under Direction-Dependent Coupling
,”
Front. Neurorobot.
,
12
, pp.
6
.
11.
Hu
,
H.
, and
Wang
,
Z.
,
2009
, “
Singular Perturbation Methods for Nonlinear Dynamic Systems With Time Delays
,”
Chaos Solitons Fractals
,
40
(
1
), pp.
13
27
.
12.
Khasawneh
,
F. A.
,
Barton
,
D. A.
, and
Mann
,
B. P.
,
2012
, “
Periodic Solutions of Nonlinear Delay Differential Equations Using Spectral Element Method
,”
Nonlinear Dyn.
,
67
(
1
), pp.
641
658
.
13.
Butcher
,
E. A.
, and
Bobrenkov
,
O. A.
,
2011
, “
On the Chebyshev Spectral Continuous Time Approximation for Constant and Periodic Delay Differential Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1541
1554
.
14.
Insperger
,
T.
, and
Stepan
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
15.
Bayly
,
P.
,
Halley
,
J.
,
Mann
,
B. P.
, and
Davies
,
M.
,
2003
, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.
16.
Lehotzky
,
D.
, and
Insperger
,
T.
,
2016
, “
A Pseudospectral Tau Approximation for Time Delay Systems and Its Comparison With Other Weighted-Residual-Type Methods
,”
Int. J. Numer. Methods Eng.
,
108
(
6
), pp.
588
613
.
17.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
,
2014
, “
Pseudospectral Methods for Stability Analysis of Delayed Dynamical Systems
,”
Int. J. Dyn. Contr.
,
2
(
2
), pp.
143
153
.
18.
Vyasarayani
,
C.
,
Subhash
,
S.
, and
Kalmar-Nagy
,
T.
,
2014
, “
Spectral Approximations for Characteristic Roots of Delay Differential Equations
,”
Int. J. Dyn. Contr.
,
2
(
2
), pp.
126
132
.
19.
Merdol
,
S.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
.
20.
Bachrathy
,
D.
, and
Stepan
,
G.
,
2013
, “
Improved Prediction of Stability Lobes With Extended Multi Frequency Solution
,”
CIRP Ann-Manuf. Technol.
,
62
(
1
), pp.
411
414
.
21.
Engelborghs
,
K.
,
Luzyanina
,
T.
, and
Roose
,
D.
,
2002
, “
Numerical Bifurcation Analysis of Delay Differential Equations Using Dde-Biftool
,”
ACM Trans. Math. Softw. (TOMS)
,
28
(
1
), pp.
1
21
.
22.
Gilsinn
,
D. E.
,
2005
, “
Discrete Fourier Series Approximation to Periodic Solutions of Autonomous Delay Differential Equations
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
, pp.
719
728
.
23.
Kalmar-Nagy
,
T.
,
Stepan
,
G.
, and
Moon
,
F. C.
,
2001
, “
Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations
,”
Nonlinear Dyn.
,
26
(
2
), pp.
121
142
.
24.
Stepan
,
G.
,
Insperger
,
T.
, and
Szalai
,
R.
,
2005
, “
Delay, Parametric Excitation, and the Nonlinear Dynamics of Cutting Processes
,”
Int. J. Bifurc. Chaos
,
15
(
9
), pp.
2783
2798
.
25.
Butcher
,
E. A.
,
Dabiri
,
A.
, and
Nazari
,
M.
,
2016
, “
Transition Curve Analysis of Linear Fractional Periodic Time-Delayed Systems via Explicit Harmonic Balance Method
,”
J. Comput. Nonlinear Dyn.
,
11
(
4
),
041005
.
26.
Wahi
,
P.
,
2014
, “
Stability and Bifurcation Studies of Delayed Systems With Variable Delays Using Galerkin Projections
,”
Int. J. Dyn. Contr.
,
2
(
2
), pp.
221
233
.
27.
Lau
,
S.
,
Cheung
,
Y.
, and
Wu
,
S.
,
1982
, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
,
49
(
4
), pp.
849
853
.
28.
Huang
,
J.
, and
Zhu
,
W.
,
2014
, “
Nonlinear Dynamics of a High-Dimensional Model of a Rotating Euler–Bernoulli Beam Under the Gravity Load
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101007
.
29.
Leung
,
A.
, and
Chui
,
S.
,
1995
, “
Non-Linear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vibr.
,
181
(
4
), pp.
619
633
.
30.
Mitra
,
R.
,
Banik
,
A.
, and
Chatterjee
,
S.
,
2013
, “
Dynamic Stability of Time-Delayed Feedback Control System by Fft Based Ihb Method
,”
WSEAS Trans. Appl. Theor. Mech.
,
4
(
8
), pp.
292
303
.
31.
Wang
,
X.
, and
Zhu
,
W.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden’s Method
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
981
989
.
32.
Wang
,
X.
, and
Zhu
,
W.
,
2017
, “
A New Spatial and Temporal Harmonic Balance Method for Obtaining Periodic Steady-State Responses of a One-Dimensional Second-Order Continuous System
,”
J. Appl. Mech.
,
84
(
1
), pp.
014501
.
33.
Wang
,
X.
, and
Zhu
,
W.
,
2017
, “
Design and Stability Analysis of an Integral Time-Delay Feedback Control Combined With an Open Loop Control for an Innitely Variable Transmission System
,”
J. Dyn. Syst. Meas. Control
,
140
(
1
),
011007
.
34.
Stepan
,
G.
,
1998
, “
Delay-Differential Equation Models for Machine Tool Chatter
,”
Dyn. Chaos Manuf. Process.
,
471152935
, pp.
165
192
.
35.
Wereley
,
N. M.
,
1990
, “
Analysis and Control of Linear Periodically Time Varying Systems
,” Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
36.
Sinha
,
S.
, and
Butcher
,
E. A.
,
1996
, “
Solution and Stability of a Set of pth Order Linear Differential Equations With Periodic Coefficients via Chebyshev Polynomials
,”
Math. Problems Eng.
,
2
(
2
), pp.
165
190
.
37.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
,
1993
, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Physica D
,
65
(
1–2
), pp.
117
134
.
You do not currently have access to this content.