Directional motion is one of the most fundamental motions in the nature, which is driven by specific types of gradients. The transition metal dichalcogenides graded lateral heterostructure is a valuable semiconductor playing crucial roles in electronic and optoelectronic devices. This lateral heterostructure has a graded composition and is thus a promising candidate to drive possible directional motions. Here, we perform molecular dynamics simulations to demonstrate the directional motion of a graphene sheet on top of the MoS2–WSe2 graded lateral heterostructure. It is quite interesting that the direction for the diffusion is sensitive to the graphene sheet’s initial location, which is in two different regions. The graphene sheet diffuses in opposite directions for the initial location that falls in different regions. We derive an analytic formula for the interlayer coupling potential, which discloses the underlying mechanism for the dependence of the directional motion on the initial location of the graphene sheet. These results shall be varifiable by present experimental set ups and may be valuable for the application of the transition metal dichalcogenides graded lateral heterostructure in practical electronic devices.

References

References
1.
Huang
,
C.
,
Wu
,
S.
,
Sanchez
,
A. M.
,
Peters
,
J. J.
,
Beanland
,
R.
,
Ross
,
J. S.
,
Rivera
,
P.
,
Yao
,
W.
,
Cobden
,
D. H.
, and
Xu
,
X.
,
2014
, “
Lateral Heterojunctions Within Monolayer MoSe2–WSe2 Semiconductors
,”
Nat. Mater.
,
13
(
12
), pp.
1096
1101
.
2.
Gong
,
Y.
,
Lin
,
J.
,
Wang
,
X.
,
Shi
,
G.
,
Lei
,
S.
,
Lin
,
Z.
,
Zou
,
X.
,
Ye
,
G.
,
Vajtai
,
R.
,
Yakobson
,
B. I.
, and
Terrones
,
H.
,
2014
, “
Vertical and In-Plane Heterostructures From WS2/Mos2 Monolayers
,”
Nat. Mater.
,
13
(
12
), pp.
1135
1142
.
3.
Zhang
,
X.-Q.
,
Lin
,
C.-H.
,
Tseng
,
Y.-W.
,
Huang
,
K.-H.
, and
Lee
,
Y.-H.
,
2014
, “
Synthesis of Lateral Heterostructures of Semiconducting Atomic Layers
,”
Nano Lett.
,
15
(
1
), pp.
410
415
.
4.
Duan
,
X.
,
Wang
,
C.
,
Shaw
,
J. C.
,
Cheng
,
R.
,
Chen
,
Y.
,
Li
,
H.
,
Wu
,
X.
,
Tang
,
Y.
,
Zhang
,
Q.
,
Pan
,
A.
, and
Jiang
,
J.
,
2014
, “
Lateral Epitaxial Growth of Two-Dimensional Layered Semiconductor Heterojunctions
,”
Nat. Nanotechnol.
,
9
(
12
), pp.
1024
1030
.
5.
Li
,
M.-Y.
,
Shi
,
Y.
,
Cheng
,
C.-C.
,
Lu
,
L.-S.
,
Lin
,
Y.-C.
,
Tang
,
H.-L.
,
Tsai
,
M.-L.
,
Chu
,
C.-W.
,
Wei
,
K.-H.
,
He
,
J.-H.
, and
Chang
,
W. H.
,
2015
, “
Epitaxial Growth of a Monolayer WSe2–MoS2 Lateral Pn Junction With an Atomically Sharp Interface
,”
Science
,
349
(
6247
), pp.
524
528
.
6.
Chen
,
K.
,
Wan
,
X.
,
Wen
,
J.
,
Xie
,
W.
,
Kang
,
Z.
,
Zeng
,
X.
,
Chen
,
H.
, and
Xu
,
J.-B.
,
2015
, “
Electronic Properties of MoS2–WS2 Heterostructures Synthesized With Two-Step Lateral Epitaxial Strategy
,”
ACS Nano
,
9
(
10
), pp.
9868
9876
.
7.
Chen
,
K.
,
Wan
,
X.
,
Xie
,
W.
,
Wen
,
J.
,
Kang
,
Z.
,
Zeng
,
X.
,
Chen
,
H.
, and
Xu
,
J.
,
2015
, “
Lateral Built-in Potential of Monolayer MoS2–WS2 In-Plane Heterostructures by a Shortcut Growth Strategy
,”
Adv. Mater.
,
27
(
41
), pp.
6431
6437
.
8.
Gong
,
Y.
,
Lei
,
S.
,
Ye
,
G.
,
Li
,
B.
,
He
,
Y.
,
Keyshar
,
K.
,
Zhang
,
X.
,
Wang
,
Q.
,
Lou
,
J.
,
Liu
,
Z.
, and
Vajtai
,
R.
,
2015
, “
Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures
,”
Nano Lett.
,
15
(
9
), pp.
6135
6141
.
9.
Chen
,
J.
,
Zhou
,
W.
,
Tang
,
W.
,
Tian
,
B.
,
Zhao
,
X.
,
Xu
,
H.
,
Liu
,
Y.
,
Geng
,
D.
,
Tan
,
S. J. R.
,
Fu
,
W.
, and
Loh
,
K. P.
,
2016
, “
Lateral Epitaxy of Atomically Sharp WSe2/WS2 Heterojunctions on Silicon Dioxide Substrates
,”
Chem. Mater.
,
28
(
20
), pp.
7194
7197
.
10.
Ling
,
X.
,
Lin
,
Y.
,
Ma
,
Q.
,
Wang
,
Z.
,
Song
,
Y.
,
Yu
,
L.
,
Huang
,
S.
,
Fang
,
W.
,
Zhang
,
X.
,
Hsu
,
A. L.
, and
Bie
,
Y.
,
2016
, “
Parallel Stitching of 2D Materials
,”
Adv. Mater.
,
28
(
12
), pp.
2322
2329
.
11.
Manimunda
,
P.
,
Nakanishi
,
Y.
,
Jaques
,
Y.
,
Susarla
,
S.
,
Woellner
,
C.
,
Bhowmick
,
S.
,
Asif
,
S.
,
Galvao
,
D.
,
Tiwary
,
C.
, and
Ajayan
,
P.
,
2017
, “
Nanoscale Deformation and Friction Characteristics of Atomically Thin WSe2 and Heterostructure Using Nanoscratch and Raman Spectroscopy
,”
2D Mater.
,
4
(
4
), p.
045005
.
12.
Zhang
,
Z.
,
Chen
,
P.
,
Duan
,
X.
,
Zang
,
K.
,
Luo
,
J.
, and
Duan
,
X.
,
2017
, “
Robust Epitaxial Growth of Two-Dimensional Heterostructures, Multiheterostructures, and Superlattices
,”
Science
,
357
(
6353
), pp.
788
792
.
13.
Chen
,
X.
,
Qiu
,
Y.
,
Yang
,
H.
,
Liu
,
G.
,
Zheng
,
W.
,
Feng
,
W.
,
Cao
,
W.
,
Hu
,
W.
, and
Hu
,
P.
,
2017
, “
In-Plane Mosaic Potential Growth of Large-Area 2D Layered Semiconductors MoS2–MoSe2 Lateral Heterostructures and Photodetector Application
,”
ACS Appl. Mater. Interfaces
,
9
(
2
), pp.
1684
1691
.
14.
Li
,
M.-Y.
,
Pu
,
J.
,
Huang
,
J.-K.
,
Miyauchi
,
Y.
,
Matsuda
,
K.
,
Takenobu
,
T.
, and
Li
,
L.-J.
,
2018
, “
Self-Aligned and Scalable Growth of Monolayer WSe2–MoS2 Lateral Heterojunctions
,”
Adv. Funct. Mater.
,
28
(
17
), p.
1706860
.
15.
Sahoo
,
P. K.
,
Memaran
,
S.
,
Xin
,
Y.
,
Balicas
,
L.
, and
Gutiérrez
,
H. R.
,
2018
, “
One-Pot Growth of Two-Dimensional Lateral Heterostructures Via Sequential Edge-Epitaxy
,”
Nature
,
553
(
7686
), pp.
63
67
.
16.
Chang
,
L.
,
Du
,
Z.
,
Zhang
,
W.
,
Zhu
,
Y.
, and
Xu
,
G.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
J. Appl. Mech.
,
84
(
8
), p.
081008
.
17.
Liu
,
X.
,
Wu
,
J.
,
Yu
,
W.
,
Chen
,
L.
,
Huang
,
Z.
,
Jiang
,
H.
,
He
,
J.
,
Liu
,
Q.
,
Lu
,
Y.
,
Zhu
,
D.
, and
Liu
,
W.
,
2017
, “
Monolayer WxMo1−xS2 Grown by Atmospheric Pressure Chemical Vapor Deposition: Bandgap Engineering and Field Effect Transistors
,”
Adv. Funct. Mater.
,
27
(
13
), p.
1606469
.
18.
Shi
,
Z.
,
Zhang
,
Q.
, and
Schwingenschlögl
,
U.
,
2018
, “
Alloying as a Route to Monolayer Transition Metal Dichalcogenides With Improved Optoelectronic Performance: Mo(S1−xSex)2 and Mo1−yWyS2
,”
ACS Appl. Energy Mater.
,
1
(
5
), pp.
2208
2214
.
19.
Wei
,
W.
,
Dai
,
Y.
,
Niu
,
C.
, and
Huang
,
B.
,
2015
, “
Controlling the Electronic Structures and Properties of In-Plane Transition-Metal Dichalcogenides Quantum Wells
,”
Sci. Rep.
,
5
, p.
17578
.
20.
Wei
,
W.
,
Dai
,
Y.
,
Sun
,
Q.
,
Yin
,
N.
,
Han
,
S.
,
Huang
,
B.
, and
Jacob
,
T.
,
2015
, “
Electronic Structures of In-Plane Two-Dimensional Transition-Metal Dichalcogenide Heterostructures
,”
Phys. Chem. Chem. Phys.
,
17
(
43
), pp.
29380
29386
.
21.
Guo
,
Y.
, and
Robertson
,
J.
,
2016
, “
Band Engineering in Transition Metal Dichalcogenides: Stacked Versus Lateral Heterostructures
,”
Appl. Phys. Lett.
,
108
(
23
), p.
233104
.
22.
Wei
,
W.
,
Dai
,
Y.
, and
Huang
,
B.
,
2016
, “
In-Plane Interfacing Effects of Two-Dimensional Transition-Metal Dichalcogenide Heterostructures
,”
Phys. Chem. Chem. Phys.
,
18
(
23
), pp.
15632
15638
.
23.
Zhang
,
J.
,
Xie
,
W.
,
Zhao
,
J.
, and
Zhang
,
S.
,
2016
, “
Band Alignment of Two-Dimensional Lateral Heterostructures
,”
2D Mater.
,
4
(
1
), p.
015038
.
24.
Wei
,
W.
,
Dai
,
Y.
, and
Huang
,
B.
,
2016
, “
Straintronics in Two-Dimensional In-Plane Heterostructures of Transition-Metal Dichalcogenides
,”
Phys. Chem. Chem. Phys.
,
19
(
1
), pp.
663
672
.
25.
Kang
,
J.
,
Sahin
,
H.
, and
Peeters
,
F. M.
,
2015
, “
Tuning Carrier Confinement in the Mos2/WS2 Lateral Heterostructure
,”
J. Phys. Chem. C
,
119
(
17
), pp.
9580
9586
.
26.
An
,
Y.
,
Zhang
,
M.
,
Wu
,
D.
,
Fu
,
Z.
, and
Wang
,
K.
,
2016
, “
The Electronic Transport Properties of Transition-Metal Dichalcogenide Lateral Heterojunctions
,”
J. Mater. Chem. C
,
4
(
46
), pp.
10962
10966
.
27.
Yang
,
Z.
,
Pan
,
J.
,
Liu
,
Q.
,
Wu
,
N.
,
Hu
,
M.
, and
Ouyang
,
F.
,
2017
, “
Electronic Structures and Transport Properties of a Mos2–NbS2 Nanoribbon Lateral Heterostructure
,”
Phys. Chem. Chem. Phys.
,
19
(
2
), pp.
1303
1310
.
28.
Cao
,
Z.
,
Harb
,
M.
,
Lardhi
,
S.
, and
Cavallo
,
L.
,
2017
, “
Impact of Interfacial Defects on the Properties of Monolayer Transition Metal Dichalcogenide Lateral Heterojunctions
,”
J. Phys. Chem. Lett.
,
8
(
7
), pp.
1664
1669
.
29.
Jiang
,
J.-W.
,
2019
, “
Misfit Strain-Induced Buckling for Transition-Metal Dichalcogenide Lateral Heterostructures: A Molecular Dynamics Study
,”
Acta Mech. Solida Sinica
,
32
(
1
), pp.
17
28
.
30.
Mahjouri-Samani
,
M.
,
Lin
,
M.-W.
,
Wang
,
K.
,
Lupini
,
A. R.
,
Lee
,
J.
,
Basile
,
L.
,
Boulesbaa
,
A.
,
Rouleau
,
C. M.
,
Puretzky
,
A. A.
,
Ivanov
,
I. N.
, and
Xiao
,
K.
,
2015
, “
Patterned Arrays of Lateral Heterojunctions Within Monolayer Two-Dimensional Semiconductors
,”
Nat. Commun.
,
6
, p.
7749
.
31.
Li
,
H.
,
Li
,
P.
,
Huang
,
J.-K.
,
Li
,
M.-Y.
,
Yang
,
C.-W.
,
Shi
,
Y.
,
Zhang
,
X.-X.
, and
Li
,
L.-J.
,
2016
, “
Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area
,”
ACS Nano
,
10
(
11
), pp.
10516
10523
.
32.
Barnard
,
A. S.
,
2015
, “
Materials Science: Nanoscale Locomotion Without Fuel
,”
Nature
,
519
(
7541
), pp.
37
38
.
33.
Fennimore
,
A.
,
Yuzvinsky
,
T.
,
Han
,
W.-Q.
,
Fuhrer
,
M.
,
Cumings
,
J.
, and
Zettl
,
A.
,
2003
, “
Rotational Actuators Based on Carbon Nanotubes
,”
Nature
,
424
(
6947
), pp.
408
410
.
34.
Zhao
,
J.
,
Huang
,
J.-Q.
,
Wei
,
F.
, and
Zhu
,
J.
,
2010
, “
Mass Transportation Mechanism in Electric-biased Carbon Nanotubes
,”
Nano Lett.
,
10
(
11
), pp.
4309
4315
.
35.
Schoen
,
P. A.
,
Walther
,
J. H.
,
Arcidiacono
,
S.
,
Poulikakos
,
D.
, and
Koumoutsakos
,
P.
,
2006
, “
Nanoparticle Traffic on Helical Tracks: Thermophoretic Mass Transport Through Carbon Nanotubes
,”
Nano Lett.
,
6
(
9
), pp.
1910
1917
.
36.
Lo
,
C.-M.
,
Wang
,
H.-B.
,
Dembo
,
M.
, and
li Wang
,
Y.
,
2000
, “
Cell Movement Is Guided by the Rigidity of the Substrate
,”
Biophys. J.
,
79
(
1
), pp.
144
152
.
37.
Chang
,
T.
,
Zhang
,
H.
,
Guo
,
Z.
,
Guo
,
X.
, and
Gao
,
H.
,
2015
, “
Nanoscale Directional Motion Towards Regions of Stiffness
,”
Phys. Rev. Lett.
,
114
, p.
015504
.
38.
Hong
,
G.
,
Zhang
,
H.
,
Guo
,
Z.
,
Chang
,
T.
, and
Chen
,
L. Q.
,
2017
, “
Mechanics of a Graphene Flake Driven by the Stiffness Jump on a Graphene Substrate
,”
J. Appl. Mech.
,
84
(
8
), p.
081007
.
39.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
40.
Stillinger
,
F. H.
, and
Weber
,
T. A.
,
1985
, “
Computer Simulation of Local Order in Condensed Phases of Silicon
,”
Phys. Rev. B
,
31
(
8
), pp.
5262
5271
.
41.
Ma
,
Y.
,
Dai
,
Y.
,
Guo
,
M.
,
Niu
,
C.
, and
Huang
,
B.
,
2011
, “
Graphene Adhesion on MoS2 Monolayer: an Ab Initio Study
,”
Nanoscale
,
3
(
9
), pp.
3883
3887
.
42.
Hong
,
Y.
,
Ju
,
M. G.
,
Zhang
,
J.
, and
Zeng
,
X. C.
,
2018
, “
Phonon Thermal Transport in a Graphene/MoSe2 Van Der Waals Heterobilayer
,”
Phys. Chem. Chem. Phys.
,
20
(
4
), pp.
2637
2645
.
43.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
, pp.
1
19
.
44.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With Ovito-the Open Visualization Tool
,”
Model. Simul. Mater. Sci. Eng.
,
18
(
6
), pp.
2154
2162
.
45.
Nosé
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
,
81
(
1
), pp.
511
519
.
46.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.
47.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the Van Der Waals Force
,”
J. Mech. Phys. Solids
,
54
(
11
), pp.
2436
2452
.
You do not currently have access to this content.