This paper presents an analytical method to investigate the effects of symmetric and asymmetric elastic supports on the nonlinear equilibria and buckling responses of shallow arches. It is found that arches with symmetric elastic supports can bifurcate into secondary paths with high-order symmetric modes. When a small asymmetry exists in the elastic supports, the equilibria of the arch may abruptly split and lead to the occurrence of remote unconnected equilibria. Such unconnected equilibria can be obtained experimentally or numerically using typical path following controls only with prior knowledge of location of these paths. A small asymmetry in the elastic supports may also make a secondary branch shrink into points connecting surrounding equilibria, resulting in the appearance of more limit points. The analytical solutions are also derived to directly calculate critical loads. We find that the magnitude of the stiffness of symmetric elastic supports has no influence on limits loads and bifurcation loads at branching into secondary paths with symmetric configurations, but greatly affect the bifurcation loads of secondary paths with asymmetric configurations. All critical loads are very sensitive to the degree of asymmetry in the elastic supports. The asymmetry in the supports reduces the top values of all pairs of critical loads compared to the case of symmetric elastic supports. The results obtained from the analytical derivations are confirmed using finite element analysis (FEA).

References

References
1.
Stanciulescu
,
I.
,
Mitchell
,
T.
,
Chandra
,
Y.
,
Eason
,
T.
, and
Spottswood
,
M.
,
2012
, “
A Lower Bound on Snap-Through Instability of Curved Beams Under Thermomechanical Loads
,”
Int. J. Non. Linear. Mech.
,
47
(
5
), pp.
561
575
.
2.
Harvey
,
P. S.
, and
Virgin
,
L. N.
,
2015
, “
Coexisting Equilibria and Stability of a Shallow Arch: Unilateral Displacement-control Experiments and Theory
,”
Int. J. Solids. Struct.
,
54
, pp.
1
11
.
3.
Chandra
,
Y.
,
Zhou
,
Y.
,
Stanciulescu
,
I.
,
Eason
,
T.
, and
Spottswood
,
S.
,
2015
, “
A Robust Composite Time Integration Scheme for Snap-through Problems
,”
Comput. Mech.
,
55
(
5
), pp.
1041
1056
.
4.
Fung
,
Y.
, and
Kaplan
,
A.
,
1952
, “
Buckling of Low Arches or Curved Beams of Small Curvature
,” Tech. Rep. NACA-TN-2840.
5.
Schreyer
,
H. L.
, and
Masur
,
E. F.
,
1966
, “
Buckling of Shallow Arches
,”
J. Eng. Mech. Div
,
92
(
4
), pp.
1
17
.
6.
Pi
,
Y. L.
,
Bradford
,
M. A.
, and
Uy
,
B.
,
2002
, “
In-plane Stability of Arches
,”
Int. J. Solids. Struct.
,
39
(
1
), pp.
105
125
.
7.
Bradford
,
M.
,
Uy
,
B.
, and
Pi
,
Y. L.
,
2002
, “
In-plane Elastic Stability of Arches Under a Central Concentrated Load
,”
J. Eng. Mech.
,
128
(
7
), pp.
710
719
.
8.
Pi
,
Y. L.
, and
Bradford
,
M.
,
2010
, “
Effects of Prebuckling Analyses on Determining Buckling Loads of Pin-ended Circular Arches
,”
Mech. Res. Commun.
,
37
(
6
), pp.
545
553
.
9.
Chen
,
J. S.
,
Ro
,
W.
, and
Lin
,
J. S.
,
2009
, “
Exact Static and Dynamic Critical Loads of a Sinusoidal Arch Under a Point Force at the Midpoint
,”
Int. J. Non. Linear. Mech.
,
44
(
1
), pp.
66
70
.
10.
Chen
,
J. S.
, and
Hung
,
S. Y.
,
2012
, “
Exact Snapping Loads of a Buckled Beam Under a Midpoint Force
,”
Appl. Math. Model.
,
36
(
4
), pp.
1776
1782
.
11.
Pi
,
Y. L.
, and
Bradford
,
M. A.
,
2010
, “
Nonlinear in-plane Elastic Buckling of Shallow Circular Arches Under Uniform Radial and Thermal Loading
,”
Int. J. Mech. Sci.
,
52
(
1
), pp.
75
88
.
12.
Pi
,
Y. L.
, and
Bradford
,
M. A.
,
2010
, “
In-plane Thermoelastic Behaviour and Buckling of Pin-ended and Fixed Circular Arches
,”
Eng. Struct.
,
32
(
1
), pp.
250
260
.
13.
Cai
,
J.
,
Xu
,
Y.
,
Feng
,
J.
, and
Zhang
,
J.
,
2012
, “
In-plane Elastic Buckling of Shallow Parabolic Arches Under an External Load and Temperature Changes
,”
J. Struct. Eng.
,
138
(
11
), pp.
1300
1309
.
14.
Moghaddasie
,
B.
, and
Stanciulescu
,
I.
,
2013
, “
Equilibria and Stability Boundaries of Shallow Arches Under Static Loading in a Thermal Environment
,”
Int. J. Non. Linear. Mech.
,
51
(
C
), pp.
132
144
.
May
.
15.
Cai
,
J.
,
Xu
,
Y.
,
Feng
,
J.
, and
Zhang
,
J.
,
2010
, “
Effects of Temperature Variations on the in-plane Stability of Steel Arch Bridges
,”
J. Bridge Eng.
,
17
(
2
), pp.
232
240
.
16.
Cai
,
J.
,
Feng
,
J.
, and
Zhang
,
J.
,
2012
, “
Thermoelastic Buckling of Steel Columns with Load-dependent Supports
,”
Int. J. Non. Linear. Mech.
,
47
(
4
), pp.
8
15
.
17.
Moon
,
J.
,
Yoon
,
K. Y.
,
Lee
,
T. H.
, and
Lee
,
H. E.
,
2007
, “
In-Plane Elastic Buckling of Pin-Ended Shallow Parabolic Arches
,”
Eng. Struct.
,
29
(
10
), pp.
2611
2617
.
18.
Moon
,
J.
,
Yoon
,
K. Y.
,
Lee
,
T. H.
, and
Lee
,
H. E.
,
2009
, “
In-Plane Strength and Design of Parabolic Arches
,”
Eng. Struct.
,
31
(
2
), pp.
444
454
.
19.
Chen
,
J. S.
, and
Hung
,
S. Y.
,
2011
, “
Snapping of an Elastica Under Various Loading Mechanisms
,”
Eur. J. Mech. A/Solids
,
30
(
4
), pp.
525
531
.
20.
Cai
,
J.
,
Feng
,
J.
,
Chen
,
Y.
, and
Huang
,
L.
,
2009
, “
In-Plane Elastic Stability of Fixed Parabolic Shallow Arches
,”
Sci. China Ser. E: Technol. Sci.
,
52
(
3
), pp.
596
602
.
21.
Cai
,
J.
, and
Feng
,
J.
,
2010
, “
Buckling of Parabolic Shallow Arches when Support Stiffens Under Compression
,”
Mech. Res. Commun.
,
37
(
5
), pp.
467
471
.
22.
Cai
,
J.
,
Zhou
,
Y.
, and
Feng
,
J.
,
2013
, “
Post-buckling Behavior of a Fixed Arch for Variable Geometry Structures
,”
Mech. Res. Commun.
,
52
, pp.
74
80
.
23.
Schreyer
,
H.
,
1972
, “
The Effect of Initial Imperfections on the Buckling Load of Shallow Circular Arches
,”
J. Appl. Mech.
,
39
(
2
), pp.
445
450
.
24.
Oran
,
C.
,
1980
, “
General Imperfection Analysis in Shallow Arches
,”
ASCE J. Eng. Mech. Div.
,
106
(
6
), pp.
1175
1193
.
25.
Virgin
,
L.
,
Wiebe
,
R.
,
Spottswood
,
S.
, and
Eason
,
T.
,
2014
, “
Sensitivity in the Structural Behavior of Shallow Arches
,”
Int. J. Non. Linear. Mech.
,
58
, pp.
212
221
.
26.
Zhou
,
Y.
,
Chang
,
W.
, and
Stanciulescu
,
I.
,
2015
, “
Non-Linear Stability and Remote Unconnected Equilibria of Shallow Arches with Asymmetric Geometric Imperfections
,”
Int. J. Non. Linear. Mech.
,
77
, pp.
1
11
.
27.
Zhou
,
Y.
, and
Stanciulescu
,
I.
,
2018
, “
A General Condition for the Existence of Unconnected Equilibria for Symmetric Arches
,”
Int. J. Non. Linear. Mech.
,
99
, pp.
144
153
.
28.
Pi
,
Y. L.
, and
Bradford
,
M. A.
,
2012
, “
Non-Linear In-Plane Analysis and Buckling of Pinned–fixed Shallow Arches Subjected to a Central Concentrated Load
,”
Int. J. Non. Linear. Mech.
,
47
(
4
), pp.
118
131
.
29.
Pi
,
Y. L.
, and
Bradford
,
M. A.
,
2013
, “
Nonlinear Elastic Analysis and Buckling of Pinned–fixed Arches
,”
Int. J. Mech. Sci.
,
68
, pp.
212
223
.
30.
Masur
,
E.
, and
Lo
,
D.
,
1972
, “
The Shallow Arch–general Buckling, Postbuckling, and Imperfection Analysis
,”
J. Struct. Mech.
,
1
(
1
), pp.
91
112
.
31.
Harrison
,
H. B.
,
1982
, “
In Plane Stability of Parabolic Arches
,”
J. Struct. Div.
,
108
(
ST1
), pp.
195
205
.
32.
Chen
,
J. S.
, and
Li
,
Y. T.
,
2006
, “
Effects of Elastic Foundation on the Snap-Through Buckling of a Shallow Arch Under a Moving Point Load
,”
Int. J. Solids. Struct.
,
43
(
14–15
), pp.
4220
4237
.
33.
Hung
,
S. Y.
, and
Chen
,
J. S.
,
2012
, “
Snapping of a Buckled Beam on Elastic Foundation Under a Midpoint Force
,”
Eur. J. Mech. A/Solids
,
31
(
1
), pp.
90
100
.
34.
Pi
,
Y. L.
,
Bradford
,
M. A.
, and
Tin-Loi
,
F.
,
2007
, “
Nonlinear Analysis and Buckling of Elastically Supported Circular Shallow Arches
,”
Int. J. Solids. Struct.
,
44
(
7–8
), pp.
2401
2425
.
35.
Pi
,
Y. L.
,
Bradford
,
M. A.
, and
Tin-Loi
,
F.
,
2008
, “
Non-Linear In-plane Buckling of Rotationally Restrained Shallow Arches Under a Central Concentrated Load
,”
Int. J. Non. Linear. Mech.
,
43
(
1
), pp.
1
17
.
36.
Pi
,
Y. L.
, and
Bradford
,
M. A.
,
2012
, “
Non-Linear Buckling and Postbuckling Analysis of Arches with Unequal Rotational End Restraints Under a Central Concentrated Load
,”
Int. J. Solids. Struct.
,
49
(
26
), pp.
3762
3773
.
37.
Pi
,
Y. L.
, and
Bradford
,
M.
,
2013
, “
Nonlinear Analysis and Buckling of Shallow Arches with Unequal Rotational End Restraints
,”
Eng. Struct.
,
46
, pp.
615
630
.
38.
Pi
,
Y. L.
, and
Bradford
,
M. A.
,
2014
, “
Multiple Unstable Equilibrium Branches and Non-linear Dynamic Buckling of Shallow Arches
,”
Int. J. Non. Linear. Mech.
,
60
, pp.
33
45
.
39.
Plaut
,
R. H.
,
1979
, “
Influence of Load Position on the Stability of Shallow Arches
,”
Z. Angew. Math. Phys.
,
30
(
3
), pp.
548
552
.
40.
Kong
,
X.
,
Wang
,
B.
, and
Hu
,
J.
,
1995
, “
Dynamic Snap Buckling of an Elastoplastic Shallow Arch with Elastically Supported and Clamped Ends
,”
Comput. Struct.
,
55
(
1
), pp.
163
166
.
41.
Xu
,
J. X.
,
Huang
,
H.
,
Zhang
,
P. Z.
, and
Zhou
,
J. Q.
,
2002
, “
Dynamic Stability of Shallow Arch with Elastic Supportsapplication in the Dynamic Stability Analysis of Inner Winding of Transformer During Short Circuit
,”
Int. J. Non-Linear Mech.
,
37
(
4
), pp.
909
920
.
42.
Lacarbonara
,
W.
,
Arafat
,
H. N.
, and
Nayfeh
,
A. H.
,
2005
, “
Non-Linear Interactions in Imperfect Beams at Veering
,”
Int. J. Non-Linear Mech.
,
40
(
7
), pp.
987
1003
.
43.
Yi
,
Z.
,
Wang
,
L.
,
Kang
,
H.
, and
Tu
,
G.
,
2014
, “
Modal Interaction Activations and Nonlinear Dynamic Response of Shallow Arch with Both Ends Vertically Elastically Constrained for Two-to-one Internal Resonance
,”
J. Sound. Vib.
,
333
(
21
), pp.
5511
5524
.
44.
Yi
,
Z.
, and
Stanciulescu
,
I.
,
2016
, “
Nonlinear Normal Modes of a Shallow Arch with Elastic Constraints for Two-to-one Internal Resonances
,”
Nonlinear. Dyn.
,
83
(
3
), pp.
1577
1600
.
45.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2004
, “
On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-resonance Excitation
,”
Nonlinear. Dyn.
,
35
(
1
), pp.
1
17
.
46.
Emam
,
S. A.
, and
Nayfeh
,
A. H.
,
2004
, “
Nonlinear Responses of Buckled Beams to Subharmonic-resonance Excitations
,”
Nonlinear. Dyn.
,
35
(
2
), pp.
105
122
.
47.
Lacarbonara
,
W.
,
Nayfeh
,
A. H.
, and
Kreider
,
W.
,
1998
, “
Experimental Validation of Reduction Methods for Nonlinear Vibrations of Distributed-parameter Systems: Analysis of a Buckled Beam
,”
Nonlinear. Dyn.
,
17
(
2
), pp.
95
117
.
48.
Han
,
J. S.
,
Ko
,
J. S.
,
Kim
,
Y. T.
, and
Kwak
,
B. M.
,
2002
, “
Parametric Study and Optimization of a Micro-optical Switch with a Laterally Driven Electromagnetic Microactuator
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
939
947
.
49.
Charlot
,
B.
,
Sun
,
W.
,
Yamashita
,
K.
,
Fujita
,
H.
, and
Toshiyoshi
,
H.
,
2008
, “
Bistable Nanowire for Micromechanical Memory
,”
J. Micromech. Microeng.
,
18
(
4
),
045005
.
50.
Southworth
,
D.
,
Bellan
,
L.
,
Linzon
,
Y.
,
Craighead
,
H.
, and
Parpia
,
J.
,
2010
, “
Stress-Based Vapor Sensing Using Resonant Microbridges
,”
Appl. Phys. Lett.
,
96
(
16
),
163503
.
51.
Intaraprasonk
,
V.
, and
Fan
,
S.
,
2011
, “
Nonvolatile Bistable All-Optical Switch From Mechanical Buckling
,”
Appl. Phys. Lett.
,
98
(
24
),
241104
.
52.
Harne
,
R.
, and
Wang
,
K.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
),
023001
.
53.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
Appl. Mech. Rev.
,
66
(
4
),
040801
.
54.
Taylor
,
R. L.
,
2014
,
FEAP—Finite Element Analysis Program
,
University of California
,
Berkeley, CA
.
55.
Zhou
,
Y.
,
Stanciulescu
,
I.
,
Eason
,
T.
, and
Spottswood
,
M.
,
2015
, “
Nonlinear Elastic Buckling and Postbuckling Analysis of Cylindrical Panels
,”
Finite. Elem. Anal. Des.
,
96
, pp.
41
50
.
You do not currently have access to this content.