The objective of the present work is to investigate the possibility of improving both stiffness and energy absorption in interlocking, architectured, brittle polymer blocks through hierarchical design. The interlocking mechanism allows load transfer between two different material blocks by means of contact at the mating surfaces. The contacting surfaces further act as weak interfaces that allow the polymer blocks to fail gradually under different loading conditions. Such controlled failure enhances the energy absorption of the polymer blocks but with a penalty in stiffness. Incorporating hierarchy in the form of another degree of interlocking at the weak interfaces improves stress transfer between contacting material blocks; thereby, improvement in terms of stiffness and energy absorption can be achieved. In the present work, the effects of hierarchy on the mechanical responses of a single interlocking geometry have been investigated systematically using finite element analysis (FEA) and results are validated with experiments. From finite element (FE) predictions and experiments, presence of two competing failure mechanisms have been observed in the interlock: the pullout of the interlock and brittle fracture of the polymer blocks. It is observed that the hierarchical interface improves the stiffness by restricting sliding between the contacting surfaces. However, such restriction can lead to premature fracture of the polymer blocks that eventually reduces energy absorption of the interlocking mechanism during pullout deformation. It is concluded that the combination of stiffness and energy absorption is optimal when fracture of the polymer blocks is delayed by allowing sufficient sliding at the interfaces.

References

1.
Barthelat
,
F.
,
2015
, “
Architectured Materials in Engineering and Biology: Fabrication, Structure, Mechanics and Performance
,”
Int. Mater. Rev.
,
60
(
8
), pp.
413
430
.
2.
Ashby
,
M. F.
,
2005
, “
Hybrids to Fill Holes in Material Property Space
,”
Philos. Mag.
,
85
(
26–27
), pp.
3235
3257
.
3.
Ashby
,
M.
, and
Bréchet
,
Y.
,
2003
, “
Designing Hybrid Materials
,”
Acta Mater.
,
51
(
19
), pp.
5801
5821
.
4.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge
.
5.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.
6.
Li
,
M.-Z.
,
Stephani
,
G.
, and
Kang
,
K.-J.
,
2011
, “
New Cellular Metals With Enhanced Energy Absorption: Wire-Woven Bulk Kagome (wbk)-Metal Hollow Sphere (mhs) Hybrids
,”
Adv. Eng. Mater.
,
13
(
1–2
), pp.
33
37
.
7.
Bückmann
,
T.
,
Stenger
,
N.
,
Kadic
,
M.
,
Kaschke
,
J.
,
Frölich
,
A.
,
Kennerknecht
,
T.
,
Eberl
,
C.
,
Thiel
,
M.
, and
Wegener
,
M.
,
2012
, “
Tailored 3d Mechanical Metamaterials Made by Dip-in Direct-Laser-Writing Optical Lithography
,”
Adv. Mater.
,
24
(
20
), pp.
2710
2714
.
8.
Martin
,
A.
,
Kadic
,
M.
,
Schittny
,
R.
,
Bückmann
,
T.
, and
Wegener
,
M.
,
2012
, “
Phonon Band Structures of Three-Dimensional Pentamode Metamaterials
,”
Phys. Rev. B: Condens. Matter Mater. Phys.
,
86
(
15
), p.
155116
.
9.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson’s Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
.
10.
Li
,
D.
,
Ma
,
J.
,
Dong
,
L.
, and
Lakes
,
R. S.
,
2017
, “
Three-Dimensional Stiff Cellular Structures With Negative Poisson’s Ratio
,”
Phys. Status Solidi B
,
254
(
12
),
1600785
.
11.
Valdevit
,
L.
,
Pantano
,
A.
,
Stone
,
H. A.
, and
Evans
,
A. G.
,
2006
, “
Optimal Active Cooling Performance of Metallic Sandwich Panels With Prismatic Cores
,”
Int. J. Heat Mass Transf.
,
49
(
21–22
), pp.
3819
3830
.
12.
Valentin
,
J. E.
,
Badylak
,
J. S.
,
McCabe
,
G. P.
, and
Badylak
,
S. F.
,
2006
, “
Extracellular Matrix Bioscaffolds for Orthopaedic Applications: A Comparative Histologic Study
,”
J. Bone Joint Surg. Am.
,
88
(
12
), pp.
2673
2686
.
13.
Bai
,
H.
,
Walsh
,
F.
,
Gludovatz
,
B.
,
Delattre
,
B.
,
Huang
,
C.
,
Chen
,
Y.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2016
, “
Bioinspired Hydroxyapatite/Poly (Methyl Methacrylate) Composite With a Nacre-Mimetic Architecture by a Bidirectional Freezing Method
,”
Adv. Mater.
,
28
(
1
), pp.
50
56
.
14.
Launey
,
M. E.
,
Munch
,
E.
,
Alsem
,
D. H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
R. O.
Ritchie
,
2009
, “
A Novel Biomimetic Approach to the Design of High-Performance Ceramic–Metal Composites
,”
J. R. Soc. Interface
,
7
(
46
),
rsif20090331
.
15.
Mirkhalaf
,
M.
,
Dastjerdi
,
A. K.
, and
Barthelat
,
F.
,
2014
, “
Overcoming the Brittleness of Glass Through Bio-Inspiration and Micro-Architecture
,”
Nat. Commun.
,
5
, pp.
3166
.
16.
Chen
,
L.
,
Ballarini
,
R.
,
Kahn
,
H.
, and
Heuer
,
A.
,
2007
, “
Bioinspired Micro-Composite Structure
,”
J. Mater. Res.
,
22
(
1
), pp.
124
131
.
17.
Dimas
,
L. S.
,
Bratzel
,
G. H.
,
Eylon
,
I.
, and
Buehler
,
M. J.
,
2013
, “
Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D Printing, and Testing
,”
Adv. Funct. Mater.
,
23
(
36
), pp.
4629
4638
.
18.
Valadez-Gonzalez
,
A.
,
Cervantes-Uc
,
J.
,
Olayo
,
R.
, and
Herrera-Franco
,
P.
,
1999
, “
Effect of Fiber Surface Treatment on the Fiber–Matrix Bond Strength of Natural Fiber Reinforced Composites
,”
Compos. Part B
,
30
(
3
), pp.
309
320
.
19.
Anand
,
K.
, and
Ramamurthy
,
K.
,
2000
, “
Development and Performance Evaluation of Interlocking-Block Masonry
,”
J. Arch. Eng.
,
6
(
2
), pp.
45
51
.
20.
Corbett
,
M.
,
Sharos
,
P. A.
,
Hardiman
,
M.
, and
McCarthy
,
C. T.
,
2017
, “
Numerical Design and Multi-Objective Optimisation of Novel Adhesively Bonded Joints Employing Interlocking Surface Morphology
,”
Int. J. Adhes. Adhes.
,
78
, pp.
111
120
.
21.
Allen
,
E. G.
,
2007
, “Understanding Ammonoid Sutures: New Insight Into the Dynamic Evolution of Paleozoic Suture Morpholog,”
Cephalopods Present and Past: New Insights and Fresh Perspectives
,
Springer
,
Dordrecht
, pp.
159
180
.
22.
Achrai
,
B.
, and
Wagner
,
H. D.
,
2013
, “
Micro-Structure and Mechanical Properties of the Turtle Carapace as a Biological Composite Shield
,”
Acta Biomater.
,
9
(
4
), pp.
5890
5902
.
23.
Song
,
J.
,
Reichert
,
S.
,
Kallai
,
I.
,
Gazit
,
D.
,
Wund
,
M.
,
Boyce
,
M. C.
, and
Ortiz
,
C.
,
2010
, “
Quantitative Microstructural Studies of the Armor of the Marine Threespine Stickleback (Gasterosteus aculeatus)
,”
J. Struct. Biol.
,
171
(
3
), pp.
318
331
.
24.
Malik
,
I.
,
Mirkhalaf
,
M.
, and
Barthelat
,
F.
,
2017
, “
Bio-Inspired “jigsaw-like” Interlocking Sutures: Modeling, Optimization, 3D Printing and Testing
,”
J. Mech. Phys. Solids
,
102
, pp.
224
238
.
25.
Malik
,
I. A.
, and
Barthelat
,
F.
,
2018
, “
Bioinspired Sutured Materials for Strength and Toughness: Pullout Mechanisms and Geometric Enrichments
,”
Int. J. Solids Struct.
,
138
, pp.
118
133
.
26.
Mirkhalaf
,
M.
, and
Barthelat
,
F.
,
2017
, “
Design, 3d Printing and Testing of Architectured Materials With Bistable Interlocks
,”
Extreme Mech. Lett.
,
11
, pp.
1
7
.
27.
Mirkhalaf
,
M.
,
Zhou
,
T.
, and
Barthelat
,
F.
,
2018
, “
Simultaneous Improvements of Strength and Toughness in Topologically Interlocked Ceramics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
15
, pp.
9128
9133
.
28.
Dyskin
,
A. V.
,
Estrin
,
Y.
,
Kanel-Belov
,
A. J.
, and
Pasternak
,
E.
,
2003
, “
Topological Interlocking of Platonic Solids: A Way to New Materials and Structures
,”
Philos. Mag. Lett.
,
83
(
3
), pp.
197
203
.
29.
Khandelwal
,
S.
,
Siegmund
,
T.
,
Cipra
,
R.
, and
Bolton
,
J.
,
2012
, “
Transverse Loading of Cellular Topologically Interlocked Materials
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2394
2403
.
30.
Wegst
,
U. G.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2015
, “
Bioinspired Structural Materials
,”
Nat. Mater.
14
(
1
), pp.
23
36
.
31.
Mueller
,
J.
,
Raney
,
J. R.
,
Shea
,
K.
, and
Lewis
,
J. A.
,
2018
, “
Architected Lattices With High Stiffness and Toughness Via Multicore–Shell 3D Printing
,”
Adv. Mater.
,
30
(
12
),
1705001
.
32.
Li
,
T.
,
Chen
,
Y.
, and
Wang
,
L.
,
2018
, “
Enhanced Fracture Toughness in Architected Interpenetrating Phase Composites by 3D Printing
,”
Compos. Sci. Technol.
,
67
, pp.
251
259
.
33.
Zhang
,
Z.
,
Zhang
,
Y.-W.
, and
Gao
,
H.
,
2010
, “
On Optimal Hierarchy of Load-Bearing Biological Materials
,”
Proc. R. Soc. Lond. B: Biol. Sci.
,
278
(
1705
),
rspb20101093
.
34.
Thorpe
,
C. T.
, and
Screen
,
H. R.
,
2016
, “Tendon Structure and Composition,”
Metabolic Influences on Risk for Tendon Disorders
,
Springer
,
Cham
, pp.
3
10
.
35.
Yao
,
H.
, and
Gao
,
H.
,
2006
, “
Mechanics of Robust and Releasable Adhesion in Biology: Bottom–Up Designed Hierarchical Structures of Gecko
,”
J. Mech. Phys. Solids
,
54
(
6
), pp.
1120
1146
.
36.
Li
,
Y.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2011
, “
Stiffness and Strength of Suture Joints in Nature
,”
Phys. Rev. E: Stat. Nonlinear Soft Matter Phys.
,
84
(
6
),
062904
.
37.
Lin
,
E.
,
Li
,
Y.
,
Weaver
,
J. C.
,
Ortiz
,
C.
, and
Boyce
,
M. C.
,
2014
, “
Tunability and Enhancement of Mechanical Behavior With Additively Manufactured Bio-Inspired Hierarchical Suture Interfaces
,”
J. Mater. Res.
,
29
(
17
), pp.
1867
1875
.
38.
Liu
,
L.
,
Jiang
,
Y.
,
Boyce
,
M.
,
Ortiz
,
C.
,
Baur
,
J.
,
Song
,
J.
, and
Li
,
Y.
,
2017
, “
The Effects of Morphological Irregularity on the Mechanical Behavior of Interdigitated Biological Sutures Under Tension
,”
J. Biomech.
,
58
, pp.
71
78
.
39.
Dassault Systèmes
,
2017
, “
Abaqus/Explicit
,”
Research License
.
40.
Hooputra
,
H.
,
Gese
,
H.
,
Dell
,
H.
, and
Werner
,
H.
,
2004
, “
A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions
,”
Int. J. Crashworthiness
,
9
(
5
), pp.
449
464
.
41.
Dorogoy
,
A.
,
Rittel
,
D.
, and
Brill
,
A.
,
2010
, “
A Study of Inclined Impact in Polymethylmethacrylate Plates
,”
Int. J. Impact Eng.
,
37
(
3
), pp.
285
294
.
42.
Stansbury
,
J. W.
, and
Idacavage
,
M. J.
,
2016
, “
3d Printing With Polymers: Challenges Among Expanding Options and Opportunities
,”
Dent. Mater.
,
32
(
1
), pp.
54
64
.
43.
Wong
,
K. V.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
ISRN Mech. Eng.
,
2012
, pp.
1
10
.
You do not currently have access to this content.