Abstract

We consider the maximum value of the magnitude of transformation strain for an Eshelby inclusion set by the requirement of non-negative dissipation. The general formulation for a linear elastic solid shows that the dissipation associated with a strain transformation can be calculated as an integral over the transformed inclusion. Closed-form expressions are given for the maximum transformation strain magnitude in an isotropic linear elastic solid for both cylindrical and spherical inclusions that have undergone transformations corresponding to either a pure volume (or area) change or a pure shear. Most results presented are for transformations in an infinite solid and presume uniform material properties. Examples of the effect of a finite boundary and of differing material properties inside and outside the transformed inclusion are also given. The analytical results indicate that non-negative dissipation typically limits the transformation strain to being a constant of order unity times the critical stress at transformation divided by a relevant elastic modulus.

References

1.
Benzerga
,
A. A.
,
Bréchet
,
Y.
,
Needleman
,
A.
, and
VanderGiessen
,
E.
,
2005
, “
The Stored Energy of Cold Work: Predictions From Discrete Dislocation Plasticity
,”
Acta Mater.
,
53
, pp.
4765
4779
.
2.
Kondori
,
B.
,
Benzerga
,
A. A.
, and
Needleman
,
A.
,
2016
, “
Discrete Shear Transformation Zone Plasticity
,”
Extreme Mech. Lett.
,
9
, pp.
21
29
.
3.
Kondori
,
B.
,
Benzerga
,
A. A.
, and
Needleman
,
A.
,
2018
, “
Discrete Shear-Transformation-Zone Plasticity Modeling of Notched Bars
,”
J. Mech. Phys. Solids
,
111
, pp.
18
42
.
4.
Bulatov
,
V. V.
, and
Argon
,
A. S.
,
1994
, “
A Stochastic Model for Continuum Elasto-Plastic Behavior. I. Numerical Approach and Strain Localization
,”
Model. Simul. Mater. Sci. Eng.
,
2
, pp.
167
184
.
5.
Homer
,
E. R.
, and
Schuh
,
C. A
,
2009
, “
Mesoscale Modeling of Amorphous Metals by Shear Transformation Zone Dynamics
,”
Acta Mater.
,
57
, pp.
2823
2833
.
6.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London
,
A241
, pp.
376
396
.
7.
Eshelby
,
J. D.
,
1959
, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London
,
A252
, pp.
561
569
.
8.
Eshelby
,
J. D.
,
1961
, “
Elastic Inclusions and Inhomogeneities
,”
Prog. Solid Mech.
,
2
, pp.
89
140
.
(also in:
Collected Works of J. D. Eshelby: The Mechanics of Defects
,
X.
Markenscoff
and
A.
Gupta
, eds.,
Springer
,
New York
,
2006
)
9.
Gurtin
,
M. E.
,
2000
,
Configurational Forces as Basic Concepts of Continuum Mechanics
,
Springer
,
New York
.
10.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
J. Appl. Mech.
,
38
, pp.
379
386
.
11.
Peach
,
M.
, and
Koehler
,
J. C.
,
1950
, “
The Forces Exerted on Dislocations and the Stress Fields Produced by Them
,”
Phys. Rev. Lett.
,
80
, pp.
436
439
.
12.
Lubarda
,
V. A.
,
Blume
,
J. A.
, and
Needleman
,
A.
,
1993
, “
An Analysis of Equilibrium Dislocation Distributions
,”
Acta Metall. Mater.
,
41
, pp.
625
642
.
13.
Mura
,
T.
,
1982
,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
The Hague
.
14.
Gavazza
,
S. D.
,
1977
, “
Forces on Pure Inclusions and Somigliana Dislocations
,”
Scr. Metall.
,
11
, pp.
979
981
.
15.
Gavazza
,
S. D.
, and
Barnett
,
D. M.
,
2018
, “
The Pointwise Eshelby Force on the Interface Between a Transformed Inclusion and its Surrounding Matrix
,”
Math. Mech. Solids
,
23
, pp.
233
239
.
16.
Rice
,
J. R.
,
1975
, “Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms,”
Constitutive Equations in Plasticity
,
A. S.
Argon
, ed.,
MIT Press
,
Cambridge, MA
, pp.
23
79
, Chap. 2.
17.
Markenscoff
,
X.
,
2010
, “
Evolution Equation of Moving Defects: Dislocations and Inclusions
,”
Int. J. Fract.
,
166
, pp.
35
40
.
18.
Markenscoff
,
X.
, and
Ni
,
L.
,
2010
, “
The Energy-Release Rate and “Self-Force” of Dynamically Expanding Spherical and Plane Inclusion Boundaries with Dilatational Eigenstrain
,”
J. Mech. Phys. Solids
,
58
, pp.
1
11
.
19.
Dundurs
,
J.
, and
Markenscoff
,
X.
,
2009
, “
Stress Fields and Eshelby Forces on Half-Plane Inhomogeneities with Eigenstrains and Strip Inclusions Meeting a Free Surface
,”
Int. J. Solids Struct.
,
46
, pp.
2481
2485
.
20.
Qu
,
R. T.
,
Liu
,
Z. Q.
,
Wang
,
R. F.
, and
Zhang
,
Z. F.
,
2015
, “
Yield Strength and Yield Strain of Metallic Glasses and Their Correlations with Glass Transition Temperature
,”
J. Alloys Compd.
,
637
, pp.
44
54
.
21.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
, pp.
357
372
.
22.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
574
.
23.
Withers
,
P. J.
,
Stobbs
,
W. M.
, and
Pedersen
,
O. B.
,
1989
, “
The Application of the Eshelby Method of Internal Stress Determination to Short Fibre Metal Matrix Composites
,”
Acta Metall.
,
37
, pp.
3061
3084
.
24.
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
1982
, “
Mechanics of Transformation-Toughening in Brittle Materials
,”
J. Am. Ceram. Soc.
,
65
, pp.
242
246
.
25.
Olson
,
G. B.
, and
Cohen
,
M.
,
1976
, “
A General Mechanism of Martensitic Nucleation, Part I. General Concepts and the FCC to HCP Transformation
,”
Metall. Trans.
,
7A
, pp.
1897
1904
.
26.
Sternlof
,
K. R.
,
Rudnicki
,
J. W.
, and
Pollard
,
D. D.
,
2005
, “
Anticrack Inclusion Model for Compaction Bands in Sandstone
,”
J. Geophys. Res.
,
110
,
B11403
.
27.
Hirth
,
J. P.
,
Barnett
,
D.
, and
Hoagland
,
R. G.
,
2017
, “
Solute Atmospheres at Dislocations
,”
Acta Mater.
,
131
, pp.
574
593
.
28.
Andric
,
P.
,
Yin
,
B.
, and
Curtin
,
W. A.
,
2019
, “
Stress-Dependence of Generalized Stacking Fault Energies
,”
J. Mech. Phys. Solids
,
122
, pp.
262
279
.
29.
Hill
,
R.
,
1965
, “
Continuum Micro-Mechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
, pp.
89
101
.
30.
Ashwin
,
J.
,
Gendelman
,
O.
,
Procaccia
,
I.
, and
Sho
,
C.
,
2013
, “
Yield-Strain and Shear-Band Direction in Amorphous Solids Under Two-Dimensional Uniaxial Loading
,”
Phys. Rev. E
,
88
,
022310
.
31.
Albaret
,
T.
,
Tanguy
,
A.
,
Boioli
,
F.
, and
Rodney
,
D.
,
2016
, “
Mapping Between Atomistic Simulations and Eshelby Inclusions in the Shear Deformation of an Amorphous Silicon Model
,”
Phys. Rev. E
,
93
,
053002
.
You do not currently have access to this content.