Surface energy outside the contact zone, which is ignored in the classical Johnson–Kendall–Roberts (JKR) model, can play an essential role in adhesion mechanics of soft bodies. In this work, based on a simple elastic foundation model for a soft elastic half space with constant surface tension, an explicit expression for the change of surface energy outside the contact zone is proposed for a soft elastic substrate indented by a rigid sphere in terms of two JKR-type variables , a), where a is the radius of the contact zone and δ is the indentation depth of the rigid sphere. The derived expression is added to the classical JKR model to achieve two explicit equations for the determination of the two JKR variables , a). The results given by the present model are demonstrated with detailed comparison with known results reported in recent literature, which verified the validity and robust accuracy of the present method. In particular, the present model confirms that the change of surface energy of the substrate can play an essential role in micro/nanoscale contact of soft materials (defined by W/(E*R)0.1, where W is the adhesive energy, E* is the substrate elasticity, and R is the rigid sphere radius). The present model offers a simpler analytical method for adhesion mechanics of a rigid sphere on a soft elastic substrate when compared with several existing methods proposed in recent literature that request more substantial numerical calculations.

References

References
1.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond.
,
A324
, pp.
301
313
. 10.1098/rspa.1971.0141
2.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
3.
Butt
,
H. J.
,
Pham
,
J. T.
, and
Kappl
,
M.
,
2017
, “
Forces Between a Stiff and a Soft Surface
,”
Curr. Opin. Colloid Interface Sci.
,
27
, pp.
82
90
. 10.1016/j.cocis.2016.09.007
4.
Carrillo
,
J. M. Y.
, and
Dobrynin
,
A. V.
,
2012
, “
Contact Mechanics of Nanoparticles
,”
Langmuir
,
28
, pp.
10881
10890
. 10.1021/la301657c
5.
Rimai
,
D.
,
Quesnel
,
D.
, and
Busnaina
,
A.
,
2000
, “
The Adhesion of Dry Particles in the Nanometer to Micrometer-Size Range
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
165
, pp.
3
10
. 10.1016/S0927-7757(99)00439-2
6.
Cao
,
Z.
,
Stevens
,
M. J.
, and
Dobrynin
,
A. V.
,
2014
, “
Elastocapillarity: Adhesion and Wetting in Soft Polymeric Systems
,”
Macromolecules
,
47
, pp.
6515
6521
. 10.1021/ma5013978
7.
Liu
,
T.
,
Long
,
R.
, and
Hui
,
C. Y.
,
2014
, “
The Energy Release Rate of a Pressurized Crack in Soft Elastic Materials: Effects of Surface Tension and Large Deformation
,”
Soft Matter
,
10
, pp.
7723
7729
. 10.1039/C4SM01129E
8.
Carrillo
,
J. M. Y.
, and
Dobrynin
,
A. V.
,
2012
, “
Dynamics of Nanoparticle Adhesion
,”
J. Chem. Phys.
,
137
,
214902
. 10.1063/1.4769389
9.
Lau
,
A. W. C.
,
Portigliatti
,
M.
,
Raphael
,
E.
, and
Leger
,
L.
,
2002
, “
Spreading of Latex Particles on a Substrate
,”
Europhys. Lett.
,
60
, pp.
717
723
. 10.1209/epl/i2002-00367-8
10.
Rimai
,
D. S.
,
Quesnel
,
D. J.
, and
Bowen
,
R. C.
,
2001
, “
Particle Adhesion to Highly Compliant Substrates: Anomalous Power-Law Dependence of the Contact Radius on Particle Radius
,”
Langmuir
,
17
, pp.
6946
6952
. 10.1021/la010314f
11.
Chakrabarti
,
A.
, and
Chaudhury
,
M. K.
,
2013
, “
Direct Measurement of the Surface Tension of a Soft Elastic Hydrogel: Exploration of Elastocapillary Instability in Adhesion
,”
Langmuir
,
29
, pp.
6926
6935
. 10.1021/la401115j
12.
Cao
,
Z.
, and
Dobrynin
,
A. V.
,
2015
, “
Contact Mechanics of Nanoparticles: Pulling Rigid Nanoparticles From Soft Polymeric Surfaces
,”
Langmuir
,
31
, pp.
12520
12529
. 10.1021/acs.langmuir.5b03222
13.
Cao
,
Z.
,
Stevens
,
M. J.
, and
Dobrynin
,
A. V.
,
2014
, “
Adhesion and Wetting of Nanoparticles on Soft Surfaces
,”
Macromolecules
,
47
, pp.
3203
3209
. 10.1021/ma500317q
14.
Liu
,
T.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2015
, “
Adhesive Contact of a Rigid Circular Cylinder to a Soft Elastic Substrate—The Role of Surface Tension
,”
Soft Matter
,
11
, pp.
3844
3851
. 10.1039/C5SM00008D
15.
Carrillo
,
J. M. Y.
,
Raphael
,
E.
, and
Dobrynin
,
A. V.
,
2010
, “
Adhesion of Nanoparticles
,”
Langmuir
,
26
, pp.
12973
12979
. 10.1021/la101977c
16.
Ru
,
C. Q.
,
2018
, “
An Ellipsoidal Cap Model for Adhesion of a Soft Particle on a Rigid Substrate
,”
Math. Mech. Solids
, pp.
1
8
. 10.1177/1081286518756725
17.
Hui
,
C. Y.
,
Liu
,
T. S.
,
Salez
,
T.
,
Raphael
,
E.
, and
Jagota
,
A.
,
2015
, “
Indentation of a Rigid Sphere Into an Elastic Substrate With Surface Tension and Adhesion
,”
Proc. R. Soc. A
,
471
,
20140727
. 10.1098/rspa.2014.0727
18.
Long
,
J. M.
,
Wang
,
G. F.
,
Feng
,
X. Q.
, and
Yu
,
S. W.
,
2016
, “
Effects of Surface Tension on the Adhesive Contact Between a Hard Sphere and a Soft Substrate
,”
Int. J. Solids Struct.
,
84
, pp.
133
138
. 10.1016/j.ijsolstr.2016.01.021
19.
Style
,
R. W.
,
Hyland
,
C.
,
Boltyanskiy
,
R.
,
Wettlaufer
,
J. S.
, and
Dufresne
,
E. R.
,
2013
, “
Surface Tension and Contact With Soft Elastic Solids
,”
Nat. Commun.
,
4
, pp.
2728
2733
. 10.1038/ncomms3728
20.
Gao
,
X.
,
Hao
,
F.
,
Huang
,
Z. P.
, and
Fang
,
D. N.
,
2014
, “
Mechanics of Adhesive Contact at the Nanoscale: The Effect of Surface Stress
,”
Int. J. Solids Struct.
,
51
, pp.
566
574
. 10.1016/j.ijsolstr.2013.10.017
21.
Tian
,
Y.
,
Ina
,
M.
,
Cao
,
Z.
,
Sheiko
,
S. S.
, and
Dobrynin
,
A. V.
,
2018
, “
How to Measure Work of Adhesion and Surface Tension of Soft Polymeric Materials
,”
Macromolecules
,
51
, pp.
4059
4067
. 10.1021/acs.macromol.8b00738
22.
Pham
,
J. T.
,
Schellenberger
,
F.
,
Kappl
,
M.
, and
Butt
,
H. J.
,
2017
, “
From Elasticity to Capillarity in Soft Materials Indentation
,”
Phys. Rev. Lett.
,
1
,
015602
. 10.1103/PhysRevMaterials.1.015602
23.
Salez
,
T.
,
Benzaquen
,
M.
, and
Raphael
,
E.
,
2013
, “
From Adhesion to Wetting of a Soft Particle
,”
Soft Matter
,
9
, pp.
10699
10704
. 10.1039/c3sm51780b
24.
Xu
,
X. J.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2014
, “
Effects of Surface Tension on the Adhesive Contact of a Rigid Sphere to a Compliant Substrate
,”
Soft Matter
,
10
, pp.
4625
4632
. 10.1039/C4SM00216D
25.
Lin
,
D. C.
, and
Horkay
,
F.
,
2008
, “
Nanomechanics of Polymer Gels and Biological Tissues: A Critical Review of Analytical Approaches in the Hertzian Regime and Beyond
,”
Soft Matter
,
4
, pp.
669
682
. 10.1039/b714637j
26.
Style
,
R. W.
,
Jagota
,
A.
,
Hui
,
C. Y.
, and
Dufresne
,
E. R.
,
2017
, “
Elastocapillarity: Surface Tension and the Mechanics of Soft Solids
,”
Annu. Rev. Condens. Matter Phys.
,
8
, pp.
99
118
. 10.1146/annurev-conmatphys-031016-025326
27.
Bico
,
J.
,
Reyssat
,
E. T.
, and
Roman
,
B.
,
2018
, “
Elastocapillarity: When Surface Tension Deforms Elastic Solids
,”
Annu. Rev. Fluid Mech.
,
50
, pp.
629
659
. 10.1146/annurev-fluid-122316-050130
28.
Gao
,
X.
,
Hao
,
F.
,
Fang
,
D. N.
, and
Huang
,
Z. P.
,
2013
, “
Boussinesq Problem With the Surface Effect and Its Application to Contact Mechanics at the Nanoscale
,”
Int. J. Solids Struct.
,
50
, pp.
2620
2630
. 10.1016/j.ijsolstr.2013.04.007
29.
Chen
,
X.
, and
Hutchinson
,
J. W.
,
2004
, “
Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates
,”
J. Appl. Mech.
,
71
, pp.
597
603
. 10.1115/1.1756141
30.
Bigonia
,
D.
,
Geia
,
M.
, and
Movchan
,
A. B.
,
2008
, “
Dynamics of a Prestressed Stiff Layer on an Elastic Half Space: Filtering and Band Gap Characteristics of Periodic Structural Models Derived From Long-Wave Asymptotics
,”
J. Mech. Phys. Solids
,
56
, pp.
2494
2520
. 10.1016/j.jmps.2008.02.007
31.
Karam
,
G. N.
, and
Gibson
,
L. J.
,
1995
, “
Elastic Buckling of Cylindrical Shells With Elastic Cores—I. Analysis
,”
Int. J. Solids Struct.
,
32
, pp.
1259
1283
. 10.1016/0020-7683(94)00147-O
This content is only available via PDF.
You do not currently have access to this content.