The kinetic energy of a mass moving horizontally can be completely converted into potential energy using a spring as an intermediary. The spring can be used to temporarily store some of the energy of the mass and change the direction of motion of the mass from horizontal to vertical. A nondimensional framework is used to study this problem for a point mass, first with a linear spring and then with a nonlinear spring that is an elastica. Solutions to the problems with the linear spring and elastica show many similarities and some dissimilarities. The dynamics of the point mass and elastica resemble the mechanics of a pole-vault; and therefore, a nonconservative external torque is introduced to parallel the muscle work done by vaulters. For the nonconservative system, the problem is solved for complete transformation of the kinetic energy of the mass and the work done by the external torque into potential energy of the mass. The initial velocities for the two cases, with and without the nonconservative force, are quite similar; and therefore, the maximum potential energy of the mass is higher in the presence of the nonconservative force. A realistic dimensional example is considered; the solution to the problem, despite several simplifying assumptions, is found to be similar to data of elite pole vaulters presented in the literature.

References

1.
Frère
,
J.
,
L’hermette
,
M.
,
Slawinski
,
J.
, and
Tourny-Chollet
,
C.
,
2010
, “
Mechanics of Pole Vaulting: A Review
,”
Sports Biomech.
,
9
(
2
), pp.
123
138
.
2.
Hubbard
,
M.
,
1980
, “
Dynamics of the Pole Vault
,”
J. Biomech.
,
13
(
11
), pp.
965
976
.
3.
Griner
,
G.
,
1984
, “
A Parametric Solution to the Elastic Pole-vaulting Pole Problem
,”
J. Appl. Mech.
,
51
(
2
), pp.
409
414
.
4.
Ekevad
,
M.
, and
Lundberg
,
B.
,
1997
, “
Influence of Pole Length and Stiffness on the Energy Conversion in Pole-vaulting
,”
J. Biomech.
,
30
(
3
), pp.
259
264
.
5.
Ekevad
,
M.
, and
Lundberg
,
B.
,
1995
, “
Simulation of ‘Smart’ Pole Vaulting
,”
J. Biomech.
,
28
(
9
), pp.
1079
1090
.
6.
Drücker
,
S.
,
Schneider
,
K.
,
Ghothra
,
N.-K.
, and
Bargmann
,
S.
,
2018
, “
Finite Element Simulation of Pole Vaulting
,”
Sports Eng.
,
21
(
2
), pp.
85
93
.
7.
Linthorne
,
N. P.
,
2000
, “
Energy Loss in the Pole Vault Take-off and the Advantage of the Flexible Pole
,”
Sports Eng.
,
3
(
4
), pp.
205
218
.
8.
Liu
,
G.
,
Nguang
,
S.-K.
, and
Zhang
,
Y.
,
2011
, “
Pole Vault Performance for Anthropometric Variability via a Dynamical Optimal Control Model
,”
J. Biomech.
,
44
(
3
), pp.
436
441
.
9.
Dillman
,
C. J.
, and
Nelson
,
R. C.
,
1968
, “
The Mechanical Energy Transformations of Pole Vaulting with a Fiberglass Pole
,”
J. Biomech.
,
1
(
3
), pp.
175
183
.
10.
Angulo-Kinzler
,
R. M.
,
Kinzler
,
S. B.
,
Balius
,
X.
,
Turro
,
C.
,
Caubet
,
J. M.
,
Escoda
,
J.
, and
Prat
,
J. A.
,
1994
, “
Biomechanical Analysis of the Pole Vault Event
,”
J. Appl. Biomech.
,
10
(
2
), pp.
147
165
.
11.
Arampatzis
,
A.
,
Schade
,
F.
, and
Brüggemann
,
G.-P.
,
2004
, “
Effect of the Pole–human Body Interaction on Pole Vaulting Performance
,”
J. Biomech.
,
37
(
9
), pp.
1353
1360
.
12.
Schade
,
F.
,
Arampatzis
,
A.
, and
Brüggemann
,
G.-P.
,
2006
, “
Reproducibility of Energy Parameters in the Pole Vault
,”
J. Biomech.
,
39
(
8
), pp.
1464
1471
.
13.
McGinnis
,
P. M.
, and
Bergman
,
L. A.
,
1986
, “
An Inverse Dynamic Analysis of the Pole Vault
,”
Int. J. Sport Biomech.
,
2
(
3
), pp.
186
201
.
14.
Morlier
,
J.
, and
Mesnard
,
M.
,
2007
, “
Influence of the Moment Exerted by the Athlete on the Pole in Pole-vaulting Performance
,”
J. Biomech.
,
40
(
10
), pp.
2261
2267
.
15.
Fukushima
,
T.
,
Nishikawa
,
S.
, and
Kuniyoshi
,
Y.
,
2014
, “
Active Bending Motion of Pole Vault Robot to Improve Reachable Height
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong
, pp.
4208
4214
.
16.
Nishikawa
,
S.
,
Kobayashi
,
T.
,
Fukushima
,
T.
, and
Kuniyoshi
,
Y.
,
2015
, “
Pole Vaulting Robot with Dual Articulated Arms That Can Change Reaching Position Using Active Bending Motion
,”
IEEE-RAS 15th International Conference on Humanoid Robots
,
Seoul, South Korea
, pp.
395
400
.
17.
Armanini
,
C.
,
Dal Corso
,
F.
,
Misseroni
,
D.
, and
Bigoni
,
D.
,
2017
, “
From the Elastica Compass to the Elastica Catapult: An Essay on the Mechanics of Soft Robot Arm
,”
Proc. R. Soc. A
,
473
(
2198
), pp.
1
23
.
18.
Hoepffner
,
J.
,
2012
, “
Models for an Alternative Pole Vault
,”
Phys. Sports
, pp.
1
6
.
19.
Greenwood
,
D. T.
,
2003
,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge
.
20.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
Washington, DC
.
21.
Watson
,
L. T.
, and
Wang
,
C. Y.
,
1981
, “
A Homotopy Method Applied to Elastica Problems
,”
Int. J. Solids Struct.
,
17
(
1
), pp.
29
37
.
22.
Kierzenka
,
J.
, and
Shampine
,
L. F.
,
2001
, “
A BVP Solver based on Residual Control and the Maltab Pse
,”
ACM Trans. Math. Softw.
,
27
(
3
), pp.
299
316
.
You do not currently have access to this content.