Based on the irreversible thermodynamics, a fully coupled chemomechanical model, i.e., the reaction–diffusion–stress model, is proposed and implemented numerically into the finite element method (FEM) with user-defined element (UEL) subroutines in abaqus. Compositional stress and growth stress are induced by the diffusion and chemical reactions in the solid, and in turn, both the diffusion and chemical reactions are stress-dependent. By providing specialization of the chemical reaction and free energy function, the specialized constitutive equations are introduced, which are highly coupled and nonlinear. The FE formulations are derived from the standard Galerkin approach and implemented via UEL subroutines in abaqus. Several illustrative numerical simulation examples are shown. The results demonstrate the validity and capability of the UEL subroutines, and show the interactions among mechanical deformation, diffusion, and chemical reaction.

References

References
1.
Chester
,
S. A.
, and
Anand
,
L.
,
2010
, “
A Coupled Theory of Fluid Permeation and Large Deformations for Elastomeric Materials
,”
J. Mech. Phys. Solids
,
58
(
11
), pp.
1879
1906
.
2.
Duan
,
Z.
,
An
,
Y.
, and
Jiang
,
H.
,
2013
, “
Simulation of the Transient Behavior of Gels Based on an Analogy Between Diffusion and Heat Transfer
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041017
.
3.
Loeffel
,
K.
, and
Anand
,
L.
,
2011
, “
A Chemo-Thermo-Mechanically Coupled Theory for Elastic-Viscoplastic Deformation, Diffusion, and Volumetric Swelling Due to a Chemical Reaction
,”
Int. J. Plast.
,
27
(
9
), pp.
1409
1431
.
4.
Loeffel
,
K.
,
Anand
,
L.
, and
Gasem
,
Z. M.
,
2013
, “
On Modeling the Oxidation of High-Temperature Alloys
,”
Acta Mater.
,
61
(
2
), pp.
399
424
.
5.
Limarga
,
A. M.
,
Vaßen
,
R.
, and
Clarke
,
D. R.
,
2011
, “
Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient
,”
ASME J. Appl. Mech.
,
78
(
1
), p.
011003
.
6.
Loret
,
B.
, and
Simões
,
F. M. F.
,
2005
, “
A Framework for Deformation, Generalized Diffusion, Mass Transfer and Growth in Multi-Species Multi-Phase Biological Tissues
,”
Eur. J. Mech. A
,
24
(
5
), pp.
757
781
.
7.
Burch
,
D.
, and
Bazant
,
M. Z.
,
2009
, “
Size-Dependent Spinodal and Miscibility Gaps for Intercalation in Nanoparticles
,”
Nano Lett.
,
9
(
11
), pp.
3795
3800
.
8.
Larché
,
F.
, and
Cahn
,
J.
,
1973
, “
A Linear Theory of Thermochemical Equilibrium of Solids Under Stress
,”
Acta Metall.
,
21
(
8
), pp.
1051
1063
.
9.
Rambert
,
G.
,
Jugla
,
G.
,
Grandidier
,
J.-C.
, and
Cangemi
,
L.
,
2006
, “
A Modelling of the Direct Couplings Between Heat Transfer, Mass Transport, Chemical Reactions and Mechanical Behaviour. Numerical Implementation to Explosive Decompression
,”
Compos. Part A
,
37
(
4
), pp.
571
584
.
10.
Rambert
,
G.
,
Grandidier
,
J.-C.
, and
Aifantis
,
E. C.
,
2007
, “
On the Direct Interactions Between Heat Transfer, Mass Transport and Chemical Processes Within Gradient Elasticity
,”
Eur. J. Mech. A-Solid
,
26
(
1
), pp.
68
87
.
11.
Haftbaradaran
,
H.
, and
Qu
,
J.
,
2015
, “
Two-Dimensional Chemo-Elasticity Under Chemical Equilibrium
,”
Int. J. Solids Struct.
,
56–57
, pp.
126
135
.
12.
Tolpygo
,
V.
,
Dryden
,
J.
, and
Clarke
,
D.
,
1998
, “
Determination of the Growth Stress and Strain in α-Al2O3 Scales During the Oxidation of Fe–22Cr–4.8 Al–0.3 Y Alloy
,”
Acta Mater.
,
46
(
3
), pp.
927
937
.
13.
Clarke
,
D. R.
,
2003
, “
The Lateral Growth Strain Accompanying the Formation of a Thermally Grown Oxide
,”
Acta Mater.
,
51
(
5
), pp.
1393
1407
.
14.
Craig
,
S. L.
,
2012
, “
Mechanochemistry: A Tour of Force
,”
Nature
,
487
(
7406
), pp.
176
177
.
15.
Hu
,
S.
, and
Shen
,
S.
,
2013
, “
Non-Equilibrium Thermodynamics and Variational Principles for Fully Coupled Thermal–Mechanical–Chemical Processes
,”
Acta Mech.
,
224
(
12
), pp.
2895
2910
.
16.
Freidin
,
A.
,
Vilchevskaya
,
E.
, and
Korolev
,
I.
,
2014
, “
Stress-Assist Chemical Reactions Front Propagation in Deformable Solids
,”
Int. J. Eng. Sci.
,
83
, pp.
57
75
.
17.
Zhang
,
X.
, and
Zheng
,
Z.
,
2017
, “
A Coupled Theory for Chemically Active and Deformable Solids With Mass Diffusion and Heat Conduction
,”
J. Mech. Phys. Solids
,
107
, pp.
49
75
.
18.
Chen
,
J.
,
Wang
,
H.
,
Yu
,
P.
, and
Shen
,
S.
,
2017
, “
A Finite Element Implementation of a Fully Coupled Mechanical–Chemical Theory
,”
Int. J. Appl. Mech.
,
9
(
3
), p.
1750040
.
19.
Gigliotti
,
M.
, and
Grandidier
,
J.-C.
,
2010
, “
Chemo-Mechanics Couplings in Polymer Matrix Materials Exposed to Thermo-Oxidative Environments
,”
C. R. Méc.
,
338
(
3
), pp.
164
175
.
20.
Kuang
,
Z.-B.
,
2015
, “
Energy and Entropy Equations in Coupled Nonequilibrium Thermal Mechanical Diffusive Chemical Heterogeneous System
,”
Sci. Bull.
,
60
(
10
), pp.
952
957
.
21.
Yu
,
P.
, and
Shen
,
S.
,
2014
, “
A Fully Coupled Theory and Variational Principle for Thermal–Electrical–Chemical–Mechanical Processes
,”
ASME J. Appl. Mech.
,
81
(
11
), p.
111005
.
22.
Liu
,
W.
,
Xia
,
W.
, and
Shen
,
S.
,
2016
, “
Fully Coupling Chemomechanical Yield Theory Based on Evolution Equations
,”
Int. J. Appl. Mech.
,
8
(
4
), p.
1650058
.
23.
Idiart
,
A. E.
,
López
,
C. M.
, and
Carol
,
I.
,
2011
, “
Chemo-Mechanical Analysis of Concrete Cracking and Degradation Due to External Sulfate Attack: A Meso-Scale Model
,”
Cem. Concr. Compos.
,
33
(
3
), pp.
411
423
.
24.
Krishnamurthy
,
R.
, and
Srolovitz
,
D.
,
2004
, “
Stress Distributions in Growing Polycrystalline Oxide Films
,”
Acta Mater.
,
52
(
13
), pp.
3761
3780
.
25.
Krishnamurthy
,
R.
, and
Srolovitz
,
D. J.
,
2003
, “
Stress Distributions in Growing Oxide Films
,”
Acta Mater.
,
51
(
8
), pp.
2171
2190
.
26.
Wang
,
H.
,
Suo
,
Y.
, and
Shen
,
S.
,
2015
, “
Reaction–Diffusion–Stress Coupling Effect in Inelastic Oxide Scale During Oxidation
,”
Oxid. Met.
,
83
(
5–6
), pp.
507
519
.
27.
Kuhl
,
D.
,
Bangert
,
F.
, and
Meschke
,
G.
,
2004
, “
Coupled Chemo-Mechanical Deterioration of Cementitious Material—Part II: Numerical Methods and Simulations
,”
Int. J. Solids Struct.
,
41
(
1
), pp.
41
67
.
28.
Villani
,
A.
,
Busso
,
E. P.
,
Ammar
,
K.
,
Forest
,
S.
, and
Geers
,
M. G. D.
,
2014
, “
A Fully Coupled Diffusional-Mechanical Formulation: Numerical Implementation, Analytical Validation, and Effects of Plasticity on Equilibrium
,”
Arch. Appl. Mech.
,
84
(
9–11
), pp.
1647
1664
.
29.
Chester
,
S. A.
,
Di Leo
,
C. V.
, and
Anand
,
L.
,
2015
, “
A Finite Element Implementation of a Coupled Diffusion-Deformation Theory for Elastomeric Gels
,”
Int. J. Solids Struct.
,
52
, pp.
1
18
.
30.
Giner
,
E.
,
Sukumar
,
N.
,
Denia
,
F. D.
, and
Fuenmayor
,
F. J.
,
2008
, “
Extended Finite Element Method for Fretting Fatigue Crack Propagation
,”
Int. J. Solids Struct.
,
45
(
22–23
), pp.
5675
5687
.
31.
Park
,
K.
, and
Paulino
,
G. H.
,
2012
, “
Computational Implementation of the PPR Potential-Based Cohesive Model in ABAQUS: Educational Perspective
,”
Eng. Fract. Mech.
,
93
, pp.
239
262
.
32.
Henann
,
D. L.
,
Chester
,
S. A.
, and
Bertoldi
,
K.
,
2013
, “
Modeling of Dielectric Elastomers: Design of Actuators and Energy Harvesting Devices
,”
J. Mech. Phys. Solids
,
61
(
10
), pp.
2047
2066
.
33.
Anand
,
L.
,
2012
, “
A Cahn-Hilliard-Type Theory for Species Diffusion Coupled With Large Elastic-Plastic Deformations
,”
J. Mech. Phys. Solids
,
60
(
12
), pp.
1983
2002
.
34.
Prigogine
,
I.
,
1967
,
Introduction to Thermodynamics of Irreversible Processes
,
3rd ed.
,
Wiley
,
New York
.
35.
Swaminathan
,
N.
,
Qu
,
J.
, and
Sun
,
Y.
,
2007
, “
An Electrochemomechanical Theory of Defects in Ionic Solids—I: Theory
,”
Philos. Mag.
,
87
(
11
), pp.
1705
1721
.
36.
Haase
,
R.
,
1968
,
Thermodynamics of Irreversible Processes
,
Addison-Wesley
,
Boston, MA
.
37.
Rao
,
V. S.
, and
Hughes
,
T. J.
,
2000
, “
On Modelling Thermal Oxidation of Silicon—I: Theory
,”
Int. J. Numer. Methods. Eng.
,
47
(
1–3
), pp.
341
358
.
38.
Rao
,
V. S.
,
Hughes
,
T. J.
, and
Garikipati
,
K.
,
2000
, “
On Modelling Thermal Oxidation of Silicon—II: Numerical Aspects
,”
Int. J. Numer. Methods. Eng.
,
47
(
1–3
), pp.
359
377
.
39.
Zhou
,
H.
,
Qu
,
J.
, and
Cherkaoui
,
M.
,
2010
, “
Stress-Oxidation Interaction in Selective Oxidation of Cr-Fe Alloys
,”
Mech. Mater.
,
42
(
1
), pp.
63
71
.
40.
Gigliotti
,
M.
,
Grandidier
,
J.-C.
, and
Lafarie-Frenot
,
M. C.
,
2011
, “
Assessment of Chemo-Mechanical Couplings in Polymer Matrix Materials Exposed to Thermo-Oxidative Environments at High Temperatures and Under Tensile Loadings
,”
Mech. Mater.
,
43
(
8
), pp.
431
443
.
41.
Yang
,
H.
,
Fan
,
F.
,
Liang
,
W.
,
Guo
,
X.
,
Zhu
,
T.
, and
Zhang
,
S.
,
2014
, “
A Chemo-Mechanical Model of Lithiation in Silicon
,”
J. Mech. Phys. Solids
,
70
, pp.
349
361
.
42.
Chen
,
J.
,
Yu
,
P.
,
Wang
,
H.
,
Liew
,
K.
, and
Shen
,
S.
,
2018
, “
An ABAQUS Implementation of Electrochemomechanical Theory for Mixed Ionic Electronic Conductors
,”
Solid State Ionics
,
319
, pp.
34
45
.
You do not currently have access to this content.