Based on micropolar continuum theory, the closed-form stiffness tensor of auxetic chiral lattices with V-shaped wings and rotational joints were derived. Representative volume element (RVE) of the chiral lattice was decomposed into V-shape wings with fourfold symmetry. A unified V-beam finite element was developed to reduce the nodal degrees of freedoms of the RVE to enable closed-form analytical solutions. The elasticity constants were derived as functions of the angle of the V-shaped wings, nondimensional in-plane thickness of the ribs, and the stiffness of the rotational joints. The influences of these parameters on the coupled chiral and auxetic effects were systematically explored. The results show that the elastic moduli were significantly influenced by all three parameters, while Poisson's ratio was barely influenced by the in-plane thickness of the ribs but is sensitive to the angle of the V-shaped wings and the stiffness of the rotational springs. There is a transition region out of which the spring stiffness does not considerably affect the auxeticity and the overall lattice stiffness.

References

References
1.
Love
,
A. E.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
Dover Publications
,
NewYork
.
2.
Lakes
,
R. S.
,
1987
, “
Foam Structures With a Negative Poisson's Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
.
3.
Kolpakov
,
A. G.
,
1985
, “
Determination of the Average Characteristics of Elastic Frameworks
,”
J. Appl. Math. Mech.
,
49
(
6
), pp.
739
745
.
4.
Almgren
,
R. F.
,
1985
, “
An Isotropic Three-Dimensional Structure With Poisson's Ratio = −1
,”
J. Elasticity
,
15
(4), pp.
427
430
.
5.
Evans
,
K. E.
,
1991
, “
Auxetic Polymers: A New Range of Materials
,”
Endeavour
,
15
(
4
), pp.
170
174
.
6.
Evans
,
K. E.
,
Nkansah
,
M. A.
, and
Hutchinson
,
I. J.
,
1994
, “
Auxetic Foams: Modelling Negative Poisson's Ratios
,”
Acta Metall. Mater.
,
42
(
4
), pp.
1289
1294
.
7.
Masters
,
I. G.
, and
Evans
,
K. E.
,
1996
, “
Models for the Elastic Deformation of Honeycombs
,”
Compos. Struct.
,
35
(
4
), pp.
403
422
.
8.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
9.
Chen
,
C. P.
, and
Lakes
,
R. S.
,
1989
, “
Dynamic Wave Dispersion and Loss Properties of Conventional and Negative Poisson's Ratio Polymeric Cellular Materials
,”
Cell. Polym.
,
8
, pp.
343
369
.http://silver.neep.wisc.edu/~lakes/PoissonCutOffFr.pdf
10.
Ruzzene
,
M.
,
2004
, “
Vibration and Sound Radiation of Sandwich Beams With Honeycomb Truss Core
,”
J. Sound Vib.
,
277
(
4–5
), pp.
741
763
.
11.
Scarpa
,
F. L.
,
Dallocchio
,
F.
, and
Ruzzene
,
M.
,
2003
, “
Identification of Acoustic Properties of Auxetic Foams
,”
Proc. SPIE
,
5052
, pp.
468
474
.
12.
Tee
,
K. F.
,
Spadoni
,
A.
,
Scarpa
,
F.
, and
Ruzzene
,
M.
,
2010
, “
Wave Propagation in Auxetic Tetrachiral Honeycombs
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031007
.
13.
Prall
,
D.
, and
Lakes
,
R. S.
,
1997
, “
Properties of a Chiral Honeycomb With a Poisson's Ratio of ν = −1
,”
Int. J. Mech. Sci.
,
39
(
3
), pp.
305
314
.
14.
Smith
,
C. W.
,
Grima
,
J. N.
, and
Evans
,
K. E.
,
2000
, “
Novel Mechanism for Generating Auxetic Behaviour in Reticulated Foams: Missing Rib Foam Model
,”
Acta Mater.
,
48
(
17
), pp.
4349
4356
.
15.
Gaspar
,
N.
,
Ren
,
X. J.
,
Smith
,
C. W.
,
Grima
,
J. N.
, and
Evans
,
K. E.
,
2005
, “
Novel Honeycombs With Auxetic Behaviour
,”
Acta Mater.
,
53
(
8
), pp.
2439
2445
.
16.
Webber
,
R. S.
,
Alderson
,
K. L.
, and
Evans
,
K. E.
,
2008
, “
A Novel Fabrication Route for Auxetic Polyethylene—Part 2: Mechanical Properties
,”
Polym. Eng. Sci.
,
48
(
7
), pp.
1351
1358
.
17.
Lakes
,
R.
,
1993
, “
Materials With Structural Hierarchy
,”
Nature
,
361
(
6412
), pp.
511
515
.
18.
Chan
,
N.
, and
Evans
,
K. E.
,
1998
, “
Indentation Resilience of Conventional and Auxetic Foams
,”
J. Cell. Plast.
,
34
(
3
), pp.
231
260
.
19.
Bezazi
,
A.
, and
Scarpa
,
F.
,
2007
, “
Mechanical Behaviour of Conventional and Negative Poisson's Ratio Thermoplastic Polyurethane Foams Under Compressive Cyclic Loading
,”
Int. J. Fatigue
,
29
(
5
), pp.
922
930
.
20.
Alderson
,
A.
,
Rasburn
,
J.
,
Ameer-Beg
,
S.
,
Mullarkey
,
P. G.
,
Perrie
,
W.
, and
Evans
,
K. E.
,
2000
, “
An Auxetic Filter: A Tuneable Filter Displaying Enhanced Size Selectivity or Defouling Properties
,”
Ind. Eng. Chem. Res.
,
39
(
3
), pp.
654
665
.
21.
Rasburn
,
J.
,
Mullarkey
,
P. G.
,
Evans
,
K. E.
,
Alderson
,
A.
,
Ameer-Beg
,
S.
, and
Perrie
,
W.
,
2001
, “
Auxetic Structures for Variable Permeability Systems
,”
AIChE J.
,
47
(
11
), pp.
2623
2626
.
22.
Jiang
,
Y.
, and
Li
,
Y.
,
2017
, “
3D Printed Chiral Cellular Solids With Amplified Auxetic Effects Due to Elevated Internal Rotation
,”
Adv. Eng. Mater.
,
19
(
2
), pp.
1
8
.
23.
Jiang
,
Y.
, and
Li
,
Y.
,
2017
, “
Novel 3D-Printed Hybrid Auxetic Mechanical Metamaterial With Chirality-Induced Sequential Cell Opening Mechanisms
,”
Adv. Eng. Mater.
,
20
(
2
), pp.
1
9
.
24.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
,
Théorie Des Corps Déformables
,
Hermann
,
Paris, France
.
25.
Eringen
,
A. C.
,
1999
,
Microcontinuum Field Theories—Part I: Foundations and Solids
,
Springer
,
NewYork
.
26.
Eringen
,
A. C.
,
1966
, “
Linear Theory of Micropolar Elasticity
,”
J. Math. Mech.
,
15
(
9
), pp.
909
923
.https://www.jstor.org/stable/24901442
27.
Kumar
,
R. S.
, and
McDowell
,
D. L.
,
2004
, “
Generalized Continuum Modeling of 2-D Periodic Cellular Solids
,”
Int. J. Solids Struct.
,
41
(
26
), pp.
7399
7422
.
28.
Wang
,
A.-J.
, and
McDowell
,
D. L.
,
2004
, “
In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs
,”
ASME J. Eng. Mater. Technol.
,
126
(
2
), pp.
137
156
.
29.
Mora
,
R.
, and
Waas
,
A. M.
,
2000
, “
Measurement of the Cosserat Constant of Circular-Cell Polycarbonate Honeycomb
,”
Philos. Mag. A
,
80
(
7
), pp.
1699
1713
.
30.
Lakes
,
R. S.
,
Nakamura
,
S.
,
Behiri
,
J. C.
, and
Bonfield
,
W.
,
1990
, “
Fracture Mechanics of Bone With Short Cracks
,”
J. Biomech.
,
23
(
10
), pp.
967
975
.
31.
Spadoni
,
A.
, and
Ruzzene
,
M.
,
2012
, “
Elasto-Static Micropolar Behavior of a Chiral Auxetic Lattice
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
156
171
.
32.
Liu
,
X. N.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Chiral Effect in Plane Isotropic Micropolar Elasticity and Its Application to Chiral Lattices
,”
J. Mech. Phys. Solids
,
60
(
11
), pp.
1907
1921
.
33.
Chen
,
Y.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
Q. P.
, and
Zheng
,
Q. S.
,
2014
, “
Micropolar Continuum Modelling of Bi-Dimensional Tetrachiral Lattices
,”
Proc. R. Soc., Ser. A
,
470
(
2165
), p.
20130734
.
34.
Jiang
,
Y.
,
2018
, “
Design, Mechanical Experiments and Modeling on a New Family of Hybrid Chiral Mechanical Metamaterials With Negative Poisson's Ratio
,” Ph.D. thesis, University of New Hampshire, Durham, NH.
35.
Jiang
,
Y.
, and
Li
,
Y.
,
2018
, “
3D Printed Auxetic Mechanical Metamaterial With Chiral Cells and Reentrant Cores
,”
Sci. Rep.
,
8
, p.
2397
.
36.
Gasch
,
R.
,
1993
, “
A Survey of the Dynamic Behaviour of a Simple Rotating Shaft With a Transverse Crack
,”
J. Sound Vib.
,
160
(
2
), pp.
313
332
.
You do not currently have access to this content.