The load–displacement curves of an aluminum alloy and tantalum were determined using a hat-type specimen in the compression test. Based on the results of finite element analysis, the employed geometry of the hat-type specimen was found to yield a load–displacement curve that is nearly independent of the friction between the specimen and the platen. The flow stress–strain curves of the alloy and tantalum were modeled using the Ludwik and Voce constitutive laws, respectively; furthermore, simulation of the compression event of the hat-type specimen was performed by assuming appropriate constitutive parameters. The constitutive parameters were varied via an optimization function built in matlab until the simulated load–displacement curves reasonably fit the experimental curve. The optimized constitutive parameters obtained in this way were then used to construct friction-free flow stress–strain curves of the two materials.

References

References
1.
Ludwik
,
P.
,
1909
,
Elemente Der Technologisehen Mechanik (Elements of Technological Mechanics)
,
Springer
,
Berlin
, p.
32
.
2.
Voce
,
E.
,
1948
, “
The Relationship Between Stress and Strain for Homogeneous Deformation
,”
J. Inst. Met.
,
74
, pp.
537
562
.
3.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Seventh International Symposium on Ballistics. Hague: Organizing Committee of the seventh ISB
, The Hague, The Netherlands, Apr. 19–21, pp.
541
547
.
4.
Shin
,
H.
, and
Kim
,
J.-B.
,
2010
, “
A Phenomenological Constitutive Equation to Describe Various Flow Stress Behaviors of Materials in Wide Strain Rate and Temperature Regimes
,”
ASME J. Eng. Mater. Technol.
,
132
(
2
), p.
021009
.
5.
Gross
,
A. J.
, and
Ravi-Chandar
,
K.
,
2015
, “
On the Extraction of Elastic–Plastic Constitutive Properties From Three-Dimensional Deformation Measurements
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071013
.
6.
Yafu
,
F.
,
Wang
,
Q.-D.
,
Ning
,
J.-S.
,
Chen
,
J.
, and
Wei
,
J.
,
2010
, “
Experimental Measure of Parameters: The Johnson–Cook Material Model of Extruded Mg–Gd–Y Series Alloy
,”
ASME J. Appl. Mech.
,
77
(
5
), p.
051902
.
7.
Felling
,
A. J.
, and
Doman
,
D. A.
,
2018
, “
A New Video Extensometer System for Testing Materials Undergoing Severe Plastic Deformation
,”
ASME J. Eng. Mater. Technol.
,
140
(
3
), p.
031005
.
8.
Krishna
,
C. H.
,
Davidson
,
M. J.
,
Nagaraju
,
C.
, and
Kumar
,
P. R.
,
2015
, “
Effect of Lubrication in Cold Upsetting Using Experimental and Finite Element Modeling
,”
J. Test. Eval.
,
43
(
1
), pp.
53
61
.
9.
Misirili
,
C.
,
2014
, “
On Materials Flow Using Different Lubricants in Upsetting Process
,”
Ind. Lub. Tribol.
,
66
(
5
), pp.
623
631
.
10.
Banerjee
,
J. K.
,
1985
, “
Barreling of Solid Cylinders Under Axial Compression
,”
ASME J. Eng. Mater. Technol.
,
107
(
2
), pp.
138
144
.
11.
Banerjee
,
J. K.
, and
Cárdenas
,
G.
,
1985
, “
Numerical Analysis on the Barreling of Solid Cylinders Under Axisymmetric Compression
,”
ASME J. Eng. Mater. Technol.
,
107
(
2
), pp.
145
147
.
12.
Lee
,
C. H.
, and
Altan
,
T.
,
1972
, “
Influence of Flow Stress and Friction Upon Metal Flow in Upset Forging of Rings and Cylinders
,”
ASME J. Eng. Ind.
,
94
(
3
), pp.
775
782
.
13.
Kim
,
S.
,
Kim
,
M.
,
Shin
,
H.
, and
Rhee
,
K. Y.
,
2018
, “
Measurement of a Nearly Friction-Free Stress–Strain Curve of Silicone Rubber Up to a Large Strain in Compression Testing
,”
Exp. Mech.
,
58
(
9
), pp.
1479
1484
.
14.
Tan, X., 2011, “Evaluation of Friction in Upsetting,“
Prod. Eng.
,
5
(2), pp. 141–149.
15.
Schroeder
,
W.
, and
Webster
,
D. A.
,
1949
, “
Press-Forging Thin Sections: Effect of Friction, Area, and Thickness on Pressure Required
,”
ASME J. Appl. Mech.
,
16
, pp.
289
294
.
16.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Oxford University Press
,
London
, pp.
262
281
.
17.
Rand
,
J. L.
,
1967
, “
An Analysis of the Split Hopkinson Pressure Bar
,” Technical Report, U.S. Naval Ordnance Laboratory, Silver Spring, MD, Report No.
NOLTR 67-156
.https://apps.dtic.mil/dtic/tr/fulltext/u2/668166.pdf
18.
Cha
,
S.-H.
,
Shin
,
H.
, and
Kim
,
J.-B.
,
2010
, “
Numerical Investigation of Frictional Effects and Compensation of Frictional Effects in Split Hopkinson Pressure Bar (SHPB) Test (in Korean)
,”
Trans. Korean Soc. Mech. Eng., A.
,
34
(
5
), pp.
511
518
.
19.
Hu
,
C.
,
Ou
,
H.
, and
Zhao
,
Z.
,
2015
, “
An Alternative Evaluation Method for Friction Condition in Cold Forging by Ring With Boss Compression Test
,”
J. Mater. Process. Technol.
,
224
, pp.
18
25
.
20.
Sofuoglu
,
H.
,
Gedikli
,
H.
, and
Rasty
,
J.
,
2001
, “
Determination of Friction Coefficient by Employing the Ring Compression Test
,”
ASME J. Eng. Mater. Technol.
,
123
(
3
), pp.
338
348
.
21.
Solhjoo
,
S.
,
2010
, “
A Note on ‘Barrel Compression Test’: A Method for Evaluation of Friction
,”
Comput. Mater. Sci.
,
49
(
2
), pp.
435
438
.
22.
Yao
,
Z.
,
Mei
,
D.
,
Shen
,
H.
, and
Chen
,
Z.
,
2013
, “
A Friction Evaluation Method Based on Barrel Compression Test
,”
Tribol. Lett.
,
51
(
3
), pp.
525
535
.
23.
Han
,
H.
,
2002
, “
The Validity of Mechanical Models Evaluated by Two-Specimen Method Under the Known Coefficient of Friction and Flow Stress
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
386
396
.
24.
Christiansen
,
P.
,
Martins
,
P. A. F.
, and
Bay
,
N.
,
2016
, “
Friction Compensation in the Upsetting of Cylindrical Test Specimens
,”
Exp. Mech.
,
56
(
7
), pp.
1271
1279
.
25.
Smith
,
K. K.
, and
Kassner
,
M. E.
,
2016
, “
Through-Thickness Compression Testing of Commercially Pure (Grade II) Titanium Thin Sheet to Large Strains
,”
J. Metall.
,
2016
, p.
6178790
.
26.
Altinbalik
,
T.
,
Akata
,
H.
, and
Can
,
Y.
,
2007
, “
An Approach for Calculation of Press Loads in Closed-Die Upsetting of Gear Blanks of Gear Pumps
,”
Mater. Des.
,
28
(
2
), pp.
730
734
.
27.
Al-Mousawi
,
M. M.
,
Reid
,
S. R.
, and
Deans
,
W. F.
,
1997
, “
The Use of the Split Hopkinson Pressure Bar Techniques in High Strain Rate Materials Testing
,”
Proc. Inst. Mech. Eng., Part C
,
211
(
4
), pp.
273
292
.
28.
Shin
,
H.
, and
Kim
,
J.-B.
,
2019
, “
Evolution of Specimen Strain Rate in Split Hopkinson Bar Test
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
https://doi.org/10.1177/0954406218813386
29.
Kamler
,
F.
,
Niessen
,
P.
, and
Pick
,
R. J.
,
1995
, “
Measurement of the Behaviour of High Purity Copper at Very High Rates of Straining
,”
Can. J. Phys.
,
73
(
5–6
), pp.
295
303
.
30.
Bertholf
,
L. D.
, and
Karnes
,
C. H.
,
1975
, “
Two-Dimensional Analysis of the Split Hopkinson Pressure Bar System
,”
J. Mech. Phys. Solids.
,
23
(
1
), pp.
1
19
.
31.
Ambriz
,
R. R.
,
Mesmacque
,
G.
,
Ruiz
,
A.
,
Amrouche
,
A.
, and
Lopez
,
V. H.
,
2010
, “
Effect of Welding Profile Generated by the Modified Indirect Electric Arc Technique on the Fatigue Behavior of 6061-T6 Aluminum Alloy
,”
Mater. Sci. Eng., A.
,
527
(
7–8
), pp.
2057
2064
.
32.
Chen
,
S. R.
, and
Gray Ill
,
G. T.
,
1996
, “
Constitutive Behavior of Tantalum and Tantalum-Tungsten Alloys
,”
Metall. Mater. Trans., A
,
27
(
10
), pp.
2994
3006
.
33.
Lemanski
,
S. L.
,
Petrinic
,
N.
, and
Nurick
,
G. N.
,
2013
, “
Experimental Characterisation of Aluminium 6082 at Varying Temperature and Strain Rate
,”
Strain
,
49
(
2
), pp.
147
157
.
34.
Hoge
,
K. G.
,
1966
, “
Influence of Strain Rate on Mechanical Properties of 6061-T6 Aluminum Under Uniaxial and Biaxial States of Stress
,”
Exp. Mech.
,
6
(
4
), pp.
204
211
.https://link.springer.com/article/10.1007/BF02326150
You do not currently have access to this content.