Inorganic stretchable electronics based on the island-bridge layout have attracted great attention in recent years due to their excellent electrical performance under the extreme condition of large deformations. During the mechanics design of interconnects in such devices, the major task is not only to maximize the elastic stretchability of device but also to smoothen the whole deformation process of interconnects. In this work, a novel design strategy is proposed for free-standing fractal serpentine interconnects to improve their elastic performance comprehensively without reducing the areal coverage of functional/active components of device. By modifying the classical design slightly, the new strategy can achieve a larger elastic stretchability, a smaller maximum out-of-plane displacement, and most strikingly, a smoother post-buckling deformation. This study will provide helpful guidance to the mechanics design of stretchable electronics with free-standing interconnects.

References

References
1.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y. G.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
2.
Sun
,
Y. G.
, and
Rogers
,
J. A.
,
2007
, “
Inorganic Semiconductors for Flexible Electronics
,”
Adv. Mater.
,
19
(
15
), pp.
1897
1916
.
3.
Zhang
,
Y. H.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2015
, “
Mechanics of Stretchable Batteries and Supercapacitors
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
190
199
.
4.
Ma
,
Y. J.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y. G.
, and
Zhang
,
Y. H.
,
2017
, “
Design and Application of ‘J-Shaped’ Stress-Strain Behavior in Stretchable Electronics: A Review
,”
Lab Chip
,
17
(
10
), pp.
1689
1704
.
5.
Li
,
R.
,
Li
,
M.
,
Su
,
Y. W.
,
Song
,
J. Z.
, and
Ni
,
X. Q.
,
2013
, “
An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics
,”
Soft Matter
,
9
(
35
), pp.
8476
8482
.
6.
Kim
,
D. H.
,
Song
,
J. Z.
,
Choi
,
W. M.
,
Kim
,
H. S.
,
Kim
,
R. H.
,
Liu
,
Z. J.
,
Huang
,
Y. G.
,
Hwang
,
K. C.
,
Zhang
,
Y. W.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci. U. S. A.
,
105
(
48
), pp.
18675
18680
.
7.
Xu
,
S.
,
Zhang
,
Y. H.
,
Cho
,
J.
,
Lee
,
J.
,
Huang
,
X.
,
Jia
,
L.
,
Fan
,
J. A.
,
Su
,
Y. W.
,
Su
,
J.
,
Zhang
,
H. G.
,
Cheng
,
H. Y.
,
Lu
,
B. W.
,
Yu
,
C. J.
,
Chuang
,
C.
,
Kim
,
T. I.
,
Song
,
T.
,
Shigeta
,
K.
,
Kang
,
S.
,
Dagdeviren
,
C.
,
Petrov
,
I.
,
Braun
,
P. V.
,
Huang
,
Y. G.
,
Paik
,
U.
, and
Rogers
,
J. A.
,
2013
, “
Stretchable Batteries With Self-Similar Serpentine Interconnects and Integrated Wireless Recharging Systems
,”
Nat. Commun.
,
4
, p.
1543
.
8.
Shafqat
,
S.
,
Hoefnagels
,
J. P. M.
,
Savov
,
A.
,
Joshi
,
S.
,
Dekker
,
R.
, and
Geers
,
M. G. D.
,
2017
, “
Ultra-Stretchable Interconnects for High-Density Stretchable Electronics
,”
Micromachines
,
8
(
9
), p.
277
.
9.
Zhang
,
Y. H.
,
Fu
,
H. R.
,
Xu
,
S.
,
Fan
,
J. A.
,
Hwang
,
K. C.
,
Jiang
,
J. Q.
,
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2014
, “
A Hierarchical Computational Model for Stretchable Interconnects With Fractal-Inspired Designs
,”
J. Mech. Phys. Solids
,
72
, pp.
115
130
.
10.
Shi
,
X. T.
,
Xu
,
R. X.
,
Li
,
Y. H.
,
Zhang
,
Y. H.
,
Ren
,
Z. G.
,
Gu
,
J. F.
,
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2014
, “
Mechanics Design for Stretchable, High Areal Coverage GaAs Solar Module on an Ultrathin Substrate
,”
ASME J. Appl. Mech.
,
81
(
12
), p.
124502
.
11.
Pan
,
T. S.
,
Pharr
,
M.
,
Ma
,
Y. J.
,
Ning
,
R.
,
Yan
,
Z.
,
Xu
,
R. X.
,
Feng
,
X.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2017
, “
Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics
,”
Adv. Funct. Mater.
,
27
(
37
), p.
1702589
.
12.
Zhang
,
P.
, and
Parnell
,
W. J.
,
2017
, “
Band Gap Formation and Tunability in Stretchable Serpentine Interconnects
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
091007
.
13.
Yang
,
S. X.
,
Qiao
,
S. T.
, and
Lu
,
N. S.
,
2017
, “
Elasticity Solutions to Nonbuckling Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
84
(
2
), p.
021004
.
14.
Fan
,
Z. C.
,
Zhang
,
Y. H.
,
Ma
,
Q.
,
Zhang
,
F.
,
Fu
,
H. R.
,
Hwang
,
K. C.
, and
Huang
,
Y. G.
,
2016
, “
A Finite Deformation Model of Planar Serpentine Interconnects for Stretchable Electronics
,”
Int. J. Solids Struct.
,
91
, pp.
46
54
.
15.
Xu
,
S.
,
Zhang
,
Y. H.
,
Jia
,
L.
,
Mathewson
,
K. E.
,
Jang
,
K. I.
,
Kim
,
J.
,
Fu
,
H. R.
,
Huang
,
X.
,
Chava
,
P.
,
Wang
,
R. H.
,
Bhole
,
S.
,
Wang
,
L. Z.
,
Na
,
Y. J.
,
Guan
,
Y.
,
Flavin
,
M.
,
Han
,
Z. S.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2014
, “
Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin
,”
Science
,
344
(
6179
), pp.
70
74
.
16.
Liu
,
Z. J.
,
Cheng
,
H. Y.
, and
Wu
,
J.
,
2014
, “
Mechanics of Solar Module on Structured Substrates
,”
ASME J. Appl. Mech.
,
81
(
6
), p.
064502
.
17.
Sosin
,
S.
,
Zoumpoulidis
,
T.
,
Bartek
,
M.
,
Wang
,
L.
,
Dekker
,
R.
,
Jansen
,
K. M. B.
, and
Ernst
,
L. J.
,
2008
, “
Free-Standing, Parylene-Sealed Copper Interconnect for Stretchable Silicon Electronics
,”
58th Electronic Components and Technology Conference
, Orlando, FL, May 27–30, pp.
1339
1345
.
18.
Fan
,
J. A.
,
Yeo
,
W. H.
,
Su
,
Y. W.
,
Hattori
,
Y.
,
Lee
,
W.
,
Jung
,
S. Y.
,
Zhang
,
Y. H.
,
Liu
,
Z. J.
,
Cheng
,
H. Y.
,
Falgout
,
L.
,
Bajema
,
M.
,
Coleman
,
T.
,
Gregoire
,
D.
,
Larsen
,
R. J.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2014
, “
Fractal Design Concepts for Stretchable Electronics
,”
Nat. Commun.
,
5
, p.
3266
.
19.
Ma
,
Q.
, and
Zhang
,
Y. H.
,
2016
, “
Mechanics of Fractal-Inspired Horseshoe Microstructures for Applications in Stretchable Electronics
,”
ASME J. Appl. Mech.
,
83
(
11
), p.
111008
.
20.
Dong
,
W. T.
,
Zhu
,
C.
,
Ye
,
D.
, and
Huang
,
Y. A.
,
2017
, “
Optimal Design of Self-Similar Serpentine Interconnects Embedded in Stretchable Electronics
,”
Appl. Phys. A: Mater. Sci. Process.
,
123
(
6
), p.
428
.
21.
Fu
,
H. R.
,
Xu
,
S.
,
Xu
,
R. X.
,
Jiang
,
J. Q.
,
Zhang
,
Y. H.
,
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2015
, “
Lateral Buckling and Mechanical Stretchability of Fractal Interconnects Partially Bonded Onto an Elastomeric Substrate
,”
Appl. Phys. Lett.
,
106
(
9
), p.
091902
.
22.
Zhang
,
Y. H.
,
Xu
,
S.
,
Fu
,
H. R.
,
Lee
,
J.
,
Su
,
J.
,
Hwang
,
K. C.
,
Rogers
,
J. A.
, and
Huang
,
Y. G.
,
2013
, “
Buckling in Serpentine Microstructures and Applications in Elastomer-Supported Ultra-Stretchable Electronics With High Areal Coverage
,”
Soft Matter
,
9
(
33
), pp.
8062
8070
.
23.
Chen
,
C.
,
Tao
,
W. M.
,
Su
,
Y. W.
,
Wu
,
J.
, and
Song
,
J. Z.
,
2013
, “
Lateral Buckling of Interconnects in a Noncoplanar Mesh Design for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
041031
.
24.
Fan
,
Z. C.
,
Wu
,
J.
,
Ma
,
Q.
,
Liu
,
Y.
,
Su
,
Y. W.
, and
Hwang
,
K. C.
,
2017
, “
Post-Buckling Analysis of Curved Beams
,”
ASME J. Appl. Mech.
,
84
(
3
), p.
031007
.
25.
Wang
,
A.
,
Avila
,
R.
, and
Ma
,
Y. J.
,
2017
, “
Mechanics Design for Buckling of Thin Ribbons on an Elastomeric Substrate Without Material Failure
,”
ASME J. Appl. Mech.
,
84
(
9
), p.
094501
.
You do not currently have access to this content.