Tensegrities have exhibited great importance and numerous applications in many mechanical, aerospace, and biological systems, for which symmetric configurations are preferred as the tensegrity prototypes. Besides the well-known prismatic tensegrities, another ingenious group of tensegrities with high symmetry is the truncated regular polyhedral (TRP) tensegrities, including Z-based and rhombic types. Although Z-based TRP tensegrities have been widely studied in the form-finding and application issues, rhombic TRP tensegrities have been much less reported due to the lack of explicit solutions that can produce their symmetric configurations. Our former work presented a unified solution for the rhombic TRP tensegrities by involving the force-density method which yet cannot control structural geometric sizes and may produce irregular shapes. Here, using the structural equilibrium matrix-based form-finding method, we establish some analytical equations, in terms of structural geometric parameters and force-densities in elements, to directly construct the self-equilibrated, symmetric configurations of rhombic TRP tensegrities, i.e., tetrahedral, cubic/octahedral, and dodecahedral/icosahedral configurations. Moreover, it is proved, both theoretically and numerically, that all of our obtained rhombic TRP tensegrities are super-stable and thus can be stable for any level of the force-densities without causing element material failure, which is beneficial to their actual construction. This study helps to readily design rhombic tensegrities with high symmetry and develop novel biomechanical models, mechanical metamaterials, and advanced mechanical devices.

References

References
1.
Li
,
Y.
,
Feng
,
X. Q.
,
Cao
,
Y. P.
, and
Gao
,
H. J.
,
2010
, “
Constructing Tensegrity Structures From One-Bar Elementary Cells
,”
Proc. R. Soc. A
,
466
(
2113
), pp.
45
61
.
2.
Zhang
,
L. Y.
,
Li
,
Y.
,
Cao
,
Y. P.
, and
Feng
,
X. Q.
,
2014
, “
Stiffness Matrix Based Form-Finding Method of Tensegrity Structures
,”
Eng. Struct.
,
58
, pp.
36
48
.
3.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer
,
Dordrecht, The Netherlands
.
4.
Sultan
,
C.
,
2009
, “
Tensegrity: 60 Years of Art, Science, and Engineering
,”
Adv. Appl. Mech.
,
43
, pp.
69
145
.
5.
Zhang
,
L. Y.
,
Li
,
Y.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2013
, “
A Numerical Method for Simulating Nonlinear Mechanical Responses of Tensegrity Structures Under Large Deformations
,”
ASME J. Appl. Mech.
,
80
(
6
), p.
061018
.
6.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2015
,
Tensegrity Structures: Form, Stability, and Symmetry
,
Springer
,
Tokyo, Japan
.
7.
Pathak
,
A.
,
Chen
,
C. S.
,
Evans
,
A. G.
, and
McMeeking
,
R. M.
,
2012
, “
Structural Mechanics Based Model for the Force-Bearing Elements Within the Cytoskeleton of a Cell Adhered on a Bed of Posts
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061020
.
8.
Veuve
,
N.
,
Safaei
,
S. D.
, and
Smith
,
I. F. C.
,
2016
, “
Active Control for Mid-Span Connection of a Deployable Tensegrity Footbridge
,”
Eng. Struct.
,
112
, pp.
245
255
.
9.
Xu
,
G. K.
,
Li
,
B.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2016
, “
A Tensegrity Model of Cell Reorientation on Cyclically Stretched Substrates
,”
Biophys. J.
,
111
(
7
), pp.
1478
1486
.
10.
Chen
,
L. H.
,
Kim
,
K.
,
Tang
,
E.
,
Li
,
K.
,
House
,
R.
,
Zhu
,
E. L.
,
Fountain
,
K.
,
Agogino
,
A. M.
,
Agogino
,
A.
,
Sunspiral
,
V.
, and
Jung
,
E.
,
2017
, “
Soft Spherical Tensegrity Robot Design Using Rod-Centered Actuation and Control
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
025001
.
11.
Ohsaki
,
M.
,
Zhang
,
J. Y.
, and
Elishakoff
,
I.
,
2012
, “
Multiobjective Hybrid Optimization-Antioptimization for Force Design of Tensegrity Structures
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021015
.
12.
Cai
,
J. G.
, and
Feng
,
J.
,
2015
, “
Form-Finding of Tensegrity Structures Using an Optimization Method
,”
Eng. Struct.
,
104
, pp.
126
132
.
13.
Lee
,
S.
, and
Lee
,
J.
,
2016
, “
A Novel Method for Topology Design of Tensegrity Structures
,”
Compos. Struct.
,
152
, pp.
11
19
.
14.
Feng
,
X. D.
,
2017
, “
The Optimal Initial Self-Stress Design for Tensegrity Grid Structures
,”
Comput. Struct.
,
193
, pp.
21
30
.
15.
Zhang
,
L. Y.
,
Li
,
S. X.
,
Zhu
,
S. X.
,
Zhang
,
B. Y.
, and
Xu
,
G. K.
,
2018
, “
Automatically Assembled Large-Scale Tensegrities by Truncated Regular Polyhedral and Prismatic Elementary Cells
,”
Compos. Struct.
,
184
, pp.
30
40
.
16.
Sunny
,
M. R.
,
Sultan
,
C.
, and
Kapania
,
R. K.
,
2014
, “
Optimal Energy Harvesting From a Membrane Attached to a Tensegrity Structure
,”
AIAA J.
,
52
(
2
), pp.
307
319
.
17.
Vasquez
,
R. E.
,
Crane
,
C. D.
, and
Correa
,
J. C.
,
2014
, “
Analysis of a Planar Tensegrity Mechanism for Ocean Wave Energy Harvesting
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031015
.
18.
Zhang
,
L. Y.
, and
Xu
,
G. K.
,
2015
, “
Negative Stiffness Behaviors Emerging in Elastic Instabilities of Prismatic Tensegrities Under Torsional Loading
,”
Int. J. Mech. Sci.
,
103
, pp.
189
198
.
19.
Zhang
,
L. Y.
,
Zhao
,
Z. L.
,
Zhang
,
Q. D.
, and
Feng
,
X. Q.
,
2016
, “
Chirality Induced by Structural Transformation in a Tensegrity: Theory and Experiment
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041003
.
20.
Porta
,
J. M.
, and
Hernandez-Juan
,
S.
,
2016
, “
Path Planning for Active Tensegrity Structures
,”
Int. J. Solids Struct.
,
78–79
, pp.
47
56
.
21.
Pugh
,
A.
,
1976
,
An Introduction to Tensegrity
,
University of California Press
,
Berkely, CA
.
22.
Murakami
,
H.
, and
Nishimura
,
Y.
,
2001
, “
Static and Dynamic Characterization of Regular Truncated Icosahedral and Dodecahedral Tensegrity Modules
,”
Int. J. Solids Struct.
,
38
(
50–51
), pp.
9359
9381
.
23.
Murakami
,
H.
, and
Nishimura
,
Y.
,
2003
, “
Infinitesimal Mechanism Modes of Tensegrity Modules
,”
IUTAM Symposium on Dynamics of Advanced Materials and Smart Structures
,
Springer
,
Dordrecht, The Netherlands
, pp.
273
284
.
24.
Zhang
,
J. Y.
, and
Ohsaki
,
M.
,
2012
, “
Self-Equilibrium and Stability of Regular Truncated Tetrahedral Tensegrity Structures
,”
J. Mech. Phys. Solids
,
60
(
10
), pp.
1757
1770
.
25.
Zhang
,
L. Y.
,
Li
,
Y.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H. J.
,
2012
, “
Self-Equilibrium and Super-Stability of Truncated Regular Polyhedral Tensegrity Structures: A Unified Analytical Solution
,”
Proc. R. Soc. A
,
468
(
2147
), pp.
3323
3347
.
26.
Pirentis
,
A. P.
, and
Lazopoulos
,
K. A.
,
2010
, “
On the Singularities of a Constrained (Incompressible-Like) Tensegrity-Cytoskeleton Model Under Equitriaxial Loading
,”
Int. J. Solids Struct.
,
47
(
6
), pp.
759
767
.
27.
Reilly
,
C. B.
, and
Ingber
,
D. E.
,
2018
, “
Multi-Scale Modeling Reveals Use of Hierarchical Tensegrity Principles at the Molecular, Multi-Molecular, and Cellular Levels
,”
Extreme Mech. Lett.
,
20
, pp.
21
28
.
28.
Yang
,
R. G.
,
Broussard
,
J. A.
,
Green
,
K. J.
, and
Espinosa
,
H. D.
,
2018
, “
Techniques to Stimulate and Interrogate Cell-Cell Adhesion Mechanics
,”
Extreme Mech. Lett.
,
20
, pp.
125
139
.
29.
Feng
,
X. Q.
,
Li
,
Y.
,
Cao
,
Y. P.
,
Yu
,
S. W.
, and
Gu
,
Y. T.
,
2010
, “
Design Methods of Rhombic Tensegrity Structures
,”
Acta Mech. Sin.
,
26
(
4
), pp.
559
565
.
30.
Zhang
,
L. Y.
,
Li
,
Y.
,
Cao
,
Y. P.
, and
Feng
,
X. Q.
,
2013
, “
A Unified Solution for Self-Equilibrium and Super-Stability of Rhombic Truncated Regular Polyhedral Tensegrities
,”
Int. J. Solids Struct.
,
50
(
1
), pp.
234
245
.
31.
Li
,
Y.
,
Feng
,
X. Q.
,
Cao
,
Y. P.
, and
Gao
,
H. J.
,
2010
, “
A Monte Carlo Form-Finding Method for Large Scale Regular and Irregular Tensegrity Structures
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1888
1898
.
32.
Zhang
,
L. Y.
,
Zhu
,
S. X.
,
Li
,
S. X.
, and
Xu
,
G. K.
,
2018
, “
Analytical Form-Finding of Tensegrities Using Determinant of Force-Density Matrix
,”
Compos. Struct.
,
189
, pp.
87
98
.
33.
Feng
,
X. D.
, and
Guo
,
S. H.
,
2015
, “
A Novel Method of Determining the Sole Configuration of Tensegrity Structures
,”
Mech. Res. Commun.
,
69
, pp.
66
78
.
34.
Koohestani
,
K.
,
2017
, “
On the Analytical Form-Finding of Tensegrities
,”
Compos. Struct.
,
166
, pp.
114
119
.
35.
Connelly
,
R.
, and
Back
,
A.
,
1998
, “
Mathematics and Tensegrity
,”
Am. Scientist
,
86
(
2
), pp.
142
151
.
36.
Connelly
,
R.
,
1999
, “
Tensegrity Structures: Why Are They Stable
?,”
Rigidity Theory and Applications
,
Plenum Publishers
,
New York
, pp.
47
54
.
You do not currently have access to this content.