This study reconstructs a two-dimensional stress field from measured strain data. The advantage of using stress functions is that the stress equilibrium and strain compatibility are automatically satisfied. We use the complex stress functions given by the finite series of polynomials. Then, we find the proper set of coefficients required to make the best fit to the measured strain data. Numerical examples represent the stress concentration problems around a hole(s) in a plate. It is demonstrated that the present method reconstructs the stress field around the hole(s), and the estimated stress agrees with the finite element (FE) analysis result.

References

References
1.
Murayama
,
H.
,
Tachibana
,
K.
,
Hirano
,
Y.
,
Igawa
,
H.
,
Kageyama
,
K.
,
Uzawa
,
K.
, and
Nakamura
,
T.
,
2012
, “
Distributed Strain and Load Monitoring of 6m Composite Wing Structure by FBG Arrays and Long-Length FBGs
,”
Proc. SPIE
,
8421
, p.
84212D
.
2.
Igawa
,
H.
,
Murayama
,
H.
,
Kasai
,
T.
,
Yamaguchi
,
I.
,
Kageyama
,
K.
, and
Ohta
,
K.
,
2005
, “
Measurements of Strain Distributions With a Long Gauge FBG Sensor Using Optical Frequency Domain Reflectometry
,”
Proc. SPIE
,
5855
, pp.
547
550
.
3.
Igawa
,
H.
,
Ohta
,
K.
,
Kasai
,
T.
,
Yamaguchi
,
I.
,
Murayama
,
H.
, and
Kageyama
,
K.
,
2008
, “
Distributed Measurements With a Long Gauge FBG Sensor Using Optical Frequency Domain Reflectometry (1st Report, System Investigation Using Optical Simulation Model)
,”
J. Solid Mech. Mater. Eng.
,
2
(
9
), pp.
1242
1252
.
4.
Wada
,
D.
,
Igawa
,
H.
, and
Kasai
,
T.
,
2016
, “
Vibration Monitoring of a Helicopter Blade Model Using the Optical Fiber Distributed Strain Sensing Technique
,”
Appl. Opt.
,
55
(
25
), pp.
6953
6959
.
5.
Wada
,
D.
,
Igawa
,
H.
,
Tamayama
,
M.
,
Kasai
,
T.
,
Arizono
,
H.
,
Murayama
,
H.
, and
Shiotsubo
,
K.
,
2018
, “
Flight Demonstration of Aircraft Fuselage and Bulkhead Monitoring Using Optical Fiber Distributed Sensing System
,”
Smart Mater. Struct.
,
27
(
2
), p.
025014
.
6.
Wada
,
D.
,
Igawa
,
H.
,
Tamayama
,
M.
,
Kasai
,
T.
,
Arizono
,
H.
, and
Murayama
,
H.
, “
Flight Demonstration of Aircraft Wing Monitoring Using Optical Fiber Distributed Sensing System
,”
Smart Mater. Struct.
, (in press).http://iopscience.iop.org/article/10.1088/1361-665X/aae411
7.
Nakamura
,
T.
,
Igawa
,
H.
, and
Kanda
,
A.
,
2012
, “
Inverse Identification of Continuously Distributed Loads Using Strain Data
,”
Aerosp. Sci. Technol.
,
23
(
1
), pp.
75
84
.
8.
Nakamura
,
T.
,
2016
, “
Estimation of Dynamic Load on a Beam Using Central-Difference Scheme and FEM
,”
AIP Conf. Proc.
,
1798
, p. 020108.
9.
Maniatty
,
A.
,
Zabaras
,
N.
, and
Stelson
,
K.
,
1989
, “
Finite Element Analysis of Some Inverse Elasticity Problems
,”
J. Eng. Mech.
,
115
(
6
), pp.
1303
1317
.
10.
Maniatty
,
A.
, and
Zabaras
,
N.
,
1994
, “
Investigation of Regularization Parameters and Error Estimating in Inverse Elasticity Problems
,”
Int. J. Numer. Methods Eng.
,
37
(
6
), pp.
1039
1052
.
11.
Schnur
,
D. S.
, and
Zabaras
,
N.
,
1990
, “
Finite Element Solution of Two-Dimensional Inverse Elastic Problems Using Spatial Smoothing
,”
Int. J. Numer. Methods Eng.
,
30
(
1
), pp.
57
75
.
12.
Shkarayev
,
S.
,
Krashantisa
,
R.
, and
Tessler
,
A.
,
2004
, “
An Inverse Interpolation Method Utilizing In-Flight Strain Measurements of Determining Loads and Structural Response of Aerospace Vehicles
,” NASA Langley Research Center, Hampton, VA, Report No.
20040086071
.https://ntrs.nasa.gov/search.jsp?R=20040086071
13.
Coates
,
C. W.
, and
Thamburaj
,
P.
,
2008
, “
Inverse Method Using Finite Strain Measurements to Determine Flight Load Distribution Functions
,”
AIAA J. Aircr.
,
45
(
2
), pp.
366
370
.
14.
Kirby
,
G. C.
,
Lim
,
T. W.
,
Weber
,
R.
,
Bosse
,
A. B.
,
Povich
,
C.
, and
Fisher
,
S.
,
1997
, “
Strain Based Shape Estimation Algorithms for Cantilever Beam
,”
Proc. SPIE
,
3041
, pp.
788
798
.
15.
Tessler
,
A.
, and
Spangler
,
J.
,
2003
, “
A Variational Principle for Reconstruction of Elastic Deformations in Shear Deformable Plates and Shells
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA/TM-2003-212445
.https://ntrs.nasa.gov/search.jsp?R=20030068121
16.
Tessler
,
A.
, and
Spangler
,
J.
,
2004
, “
Inverse FEM for Full-Field Reconstruction of Elastic Deformation in Shear Deformable Plates and Shells
,”
Second European Workshop on Structural Health Monitoring
, Munich, Germany, July 7–9.
17.
Vazquez
,
S. L.
,
Tessler
,
A.
,
Parks
,
J.
, and
Spangler
,
J.
,
2005
, “
Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA/TM-2005-213761
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20050185211.pdf
18.
Kefal
,
A.
,
Tessler
,
A.
, and
Oterkus
,
E.
,
2018
, “
An Efficient Inverse Finite Element Method for Shape and Stress Sensing of Laminated Composite and Sandwich Plates and Shells
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA/TP-2018-220079
.https://ntrs.nasa.gov/search.jsp?R=20180004525
19.
Sadd
,
M. H.
,
2014
,
Elasticity
,
3rd ed.
,
Academic Press
,
Cambridge, MA
.
20.
Sokolnikoff
,
I. S.
,
1955
,
Mathematical Theory of Elasticity
,
2nd ed.
,
McGraw-Hill
,
New York
.
21.
Savin
,
G. N.
,
1970
, “
Stress Distribution Around Holes
,” NASA, NASA Langley Research Center, Hampton, VA, Report No.
NASA TT F-607
.https://archive.org/details/nasa_techdoc_19710000647
22.
Woo
,
C. W.
, and
Chan
,
L. W. S.
,
1992
, “
Boundary Collocation Method for Analyzing Perforated Plate Problems
,”
Eng. Fract. Mech.
,
43
(
5
), pp.
757
768
.
23.
Sobey
,
A. J.
,
1964
, “
The Estimation of Stresses Around Unreinforced Holes in Infinite Elastic Sheets
,” Aeronautical Research Council/Ministry of Aviation, London, Reports No.
3354
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.1892&rep=rep1&type=pdf
24.
Newman
,
J. C.
,
1971
, “
An Improved Method of Collocation for the Stress Analysis of Cracked Plates With Various Shaped Boundaries
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA TN D-6376
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710022830.pdf
25.
Wu
,
B.
,
Cartwright
,
D. J.
, and
Collins
,
R. A.
,
1994
, “
The Boundary Collocation Method for Stress Intensity Factors of Cracks at Internal Boundaries in a Multiply Stiffened Sheet
,”
Trans. Eng. Sci.
,
6
, pp.
497
504
.
26.
Sharma
,
D. S.
,
2011
, “
Stress Concentration Around Circular/Elliptical/Triangular Cutouts in Infinite Composite Plate
,”
World Congress on Engineering
, Vol. III, London, July 6–8, pp. 2626–2631.
27.
Pan
,
Z.
,
Cheng
,
Y.
, and
Liu
,
J.
,
2013
, “
Stress Analysis of a Finite Plate With a Rectangular Hole Subjected to Uniaxial Tension Using Modified Stress Functions
,”
Int. J. Mech. Sci.
,
75
, pp.
265
277
.
You do not currently have access to this content.