We experimentally study the dynamic behavior of a belt-drive system to explore the effect of loading conditions, driving speed, and system inertia on both the frequency and amplitude of the observed frictional and rotational instabilities. A self-excited oscillation is reported whereby local detachment events in the belt–pulley interface serve as harmonic forcing of the pulley, leading to angular velocity oscillations that grow in time. Both the frictional instabilities and the pulley oscillations depend strongly on operating conditions and system inertia, and differ between the driver and driven pulleys. A larger net torque applied to the pulley generally intensifies Schallamach waves of detachment in the driver case but has little influence on other measured response quantities. Higher driving speeds accelerate the occurrence of frictional instabilities as well as pulley oscillations in both cases. Increasing the system's inertia does not affect the behavior of contact instabilities, but does lead to a steadier rotation of the pulley and more pronounced fluctuations in the belt tension. A simple dynamic model of the belt-drive system demonstrates good agreement with the experimental results and provides strong evidence that frictional instabilities are the primary source of the system's self-oscillation.

References

References
1.
Zhang
,
S.
, and
Xia
,
X.
,
2011
, “
Modeling and Energy Efficiency Optimization of Belt Conveyors
,”
Appl. Energy
,
88
(
9
), pp.
3061
3071
.
2.
Euler
,
M. L.
,
1762
, “
Remarques Sur L'effect du Frottement Dans L'equilibre
,”
Mémoires De L'Académie Royale Des Sci.
,
18
, pp.
265
278
.
3.
Grashof
,
F.
,
1890
,
Theoretische Maschinenlehre
,
L. Voss
,
Leipzig, Germany
.
4.
Kong
,
L.
, and
Parker
,
R. G.
,
2005
, “
Steady Mechanics of Belt-Pulley Systems
,”
ASME J. Appl. Mech.
,
72
(
1
), pp.
25
34
.
5.
Bechtel
,
S.
,
Vohra
,
S.
,
Jacob
,
K.
, and
Carlson
,
C.
,
2000
, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
197
206
.
6.
Rubin
,
M.
,
2000
, “
An Exact Solution for Steady Motion of an Extensible Belt in Multipulley Belt Drive Systems
,”
ASME J. Mech. Des.
,
122
(
3
), pp.
311
316
.
7.
Firbank
,
T.
,
1970
, “
Mechanics of the Belt Drive
,”
Int. J. Mech. Sci.
,
12
(
12
), pp.
1053
1063
.
8.
Della Pietra
,
L.
, and
Timpone
,
F.
,
2013
, “
Tension in a Flat Belt Transmission: Experimental Investigation
,”
Mech. Mach. Theory
,
70
, pp.
129
156
.
9.
Gerbert
,
G.
,
1991
, “
Paper XII (i) On Flat Belt Slip
,”
Tribol. Ser.
,
18
, pp.
333
340
.
10.
Gerbert
,
G.
,
1996
, “
Belt Slip—A Unified Approach
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
432
438
.
11.
Sorge
,
F.
,
2007
, “
Shear Compliance and Self-Weight Effects on Traction Belt Mechanics
,”
Proc. Inst. Mech. Eng., Part C
,
221
(
12
), pp.
1717
1728
.
12.
Sorge
,
F.
,
2008
, “
A Note on the Shear Influence on Belt Drive Mechanics
,”
ASME J. Mech. Des.
,
130
(
2
), p.
024502
.
13.
Alciatore
,
D.
, and
Traver
,
A.
,
1995
, “
Multipulley Belt Drive Mechanics: Creep Theory vs Shear Theory
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
506
511
.
14.
Kong
,
L.
, and
Parker
,
R. G.
,
2005
, “
Microslip Friction in Flat Belt Drives
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
10
), pp.
1097
1106
.
15.
Balta
,
B.
,
Sonmez
,
F. O.
, and
Cengiz
,
A.
,
2015
, “
Speed Losses in V-Ribbed Belt Drives
,”
Mech. Mach. Theory
,
86
, pp.
1
14
.
16.
Chen
,
T.
, and
Sung
,
C.
,
2000
, “
Design Considerations for Improving Transmission Efficiency of the Rubber V-Belt CVT
,”
Int. J. Veh. Des.
,
24
(
4
), pp.
320
333
.
17.
Zhu
,
C.
,
Liu
,
H.
,
Tian
,
J.
,
Xiao
,
Q.
, and
Du
,
X.
,
2010
, “
Experimental Investigation on the Efficiency of the Pulley-Drive CVT
,”
Int. J. Automot. Technol.
,
11
(
2
), pp.
257
261
.
18.
Firbank
,
T.
,
1977
, “
On the Forces Between the Belt and Driving Pulley of a Flat Belt Drive
,”
Design Engineering Technical Conference
, Chicago, IL, Sept., pp.
1
5
.
19.
Kim
,
H.
, and
Marshek
,
K.
,
1988
, “
Belt Forces and Surface Model for a Cloth-Backed and a Rubber-Backed Flat Belt
,”
J. Mech., Transm., Autom. Des.
,
110
(
1
), pp.
93
99
.
20.
Kim
,
H.
,
Marshek
,
K.
, and
Naji
,
M.
,
1987
, “
Forces Between an Abrasive Belt and Pulley
,”
Mech. Mach. Theory
,
22
(
1
), pp.
97
103
.
21.
Palmer
,
R.
, and
Jarvis
,
J.
,
1980
, “
Steady State Strains in Power Transmitting Flat Belts Made of Composite Material
,”
Strain
,
16
(
4
), pp.
156
161
.
22.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2002
, “
Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
4
), pp.
575
581
.
23.
Wasfy
,
T. M.
, and
Leamy
,
M.
,
2002
, “
Effect of Bending Stiffness on the Dynamic and Steady-State Responses of Belt-Drives
,”
ASME
Paper No. DETC2002/MECH-34223.
24.
Leamy
,
M.
, and
Wasfy
,
T.
,
2002
, “
Analysis of Belt-Driven Mechanics Using a Creep-Rate-Dependent Friction Law
,”
ASME J. Appl. Mech.
,
69
(
6
), pp.
763
771
.
25.
Leamy
,
M. J.
,
2005
, “
On a Perturbation Method for the Analysis of Unsteady Belt-Drive Operation
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
570
580
.
26.
Kerkkänen
,
K. S.
,
García-Vallejo
,
D.
, and
Mikkola
,
A. M.
,
2006
, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
,
43
(
3
), pp.
239
256
.
27.
Dufva
,
K.
,
Kerkkänen
,
K.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2007
, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite-Element Method
,”
Nonlinear Dyn.
,
48
(
4
), pp.
449
466
.
28.
Čepon
,
G.
, and
Boltežar
,
M.
,
2009
, “
Dynamics of a Belt-Drive System Using a Linear Complementarity Problem for the Belt–Pulley Contact Description
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1019
1035
.
29.
Kim
,
D.
,
Leamy
,
M. J.
, and
Ferri
,
A. A.
,
2011
, “
Dynamic Modeling and Stability Analysis of Flat Belt Drives Using an Elastic/Perfectly Plastic Friction Law
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
4
), p.
041009
.
30.
Wu
,
Y.
,
Leamy
,
M. J.
, and
Varenberg
,
M.
,
2018
, “
Schallamach Waves in Rolling: Belt Drives
,”
Tribol. Int.
,
119
, pp.
354
358
.
31.
Barquins
,
M.
,
1985
, “
Sliding Friction of Rubber and Schallamach Waves—A Review
,”
Mater. Sci. Eng.
,
73
, pp.
45
63
.
32.
Fukahori
,
Y.
,
Gabriel
,
P.
, and
Busfield
,
J. J. C.
,
2010
, “
How Does Rubber Truly Slide Between Schallamach Waves and Stick-Slip Motion?
,”
Wear
,
269
(
11–12
), pp.
854
866
.
33.
Schallamach
,
A.
,
1971
, “
How Does Rubber Slide?
,”
Wear
,
17
(
4
), pp.
301
312
.
34.
Barquins
,
M.
, and
Courtel
,
R.
,
1975
, “
Rubber Friction and the Rheology of Viscoelastic Contact
,”
Wear
,
32
(
2
), pp.
133
150
.
35.
Barquins
,
M.
, and
Roberts
,
A. D.
,
1986
, “
Rubber-Friction Variation With Rate and Temperature—Some New Observations
,”
J. Phys. D-Appl. Phys.
,
19
(
4
), pp.
547
563
.
36.
Best
,
B.
,
Meijers
,
P.
, and
Savkoor
,
A. R.
,
1981
, “
The Formation of Schallamach Waves
,”
Wear
,
65
(
3
), pp.
385
396
.
37.
Lin
,
T. R.
,
Farag
,
N. H.
, and
Pan
,
J.
,
2005
, “
Evaluation of Frequency Dependent Rubber Mount Stiffness and Damping by Impact Test
,”
Appl. Acoust.
,
66
(
7
), pp.
829
844
.
You do not currently have access to this content.