The nonlinear extremely large-amplitude oscillation of a cantilever subject to motion constraints is examined for the first time. In order to be able to model the large-amplitude oscillations accurately, the equation governing the cantilever centerline rotation is derived. This allows for analyzing motions of very large amplitude even when tip angle is larger than π/2. The Euler–Bernoulli beam theory is employed along with the centerline inextensibility assumption, which results in nonlinear inertial terms in the equation of motion. The motion constraint is modeled as a spring with a large stiffness coefficient. The presence of a gap between the motion constraint and the cantilever causes major difficulties in modeling and numerical simulations, and results in a nonsmooth resonance response. The final form of the equation of motion is discretized via the Galerkin technique, while keeping the trigonometric functions intact to ensure accurate results even at large-amplitude oscillations. Numerical simulations are conducted via a continuation technique, examining the effect of various system parameters. It is shown that the presence of the motion constraints widens the resonance frequency band effectively which is particularly important for energy harvesting applications.

References

References
1.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Piezoelectric MEMS-Based Wideband Energy Harvesting Systems Using a Frequency-Up-Conversion Cantilever Stopper
,”
Sens. Actuators A: Phys.
,
186
, pp.
242
248
.
2.
Huicong
,
L.
,
Chengkuo
,
L.
,
Takeshi
,
K.
,
Cho Jui
,
T.
, and
Chenggen
,
Q.
,
2012
, “
Investigation of a MEMS Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p.
035005
.
3.
Moon
,
F. C.
, and
Shaw
,
S. W.
,
1983
, “
Chaotic Vibrations of a Beam With Non-Linear Boundary Conditions
,”
Int. J. Non-Linear Mech.
,
18
(
6
), pp.
465
477
.
4.
Shaw
,
S. W.
, and
Holmes
,
P. J.
,
1983
, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
.
5.
Choi
,
Y. S.
, and
Noah
,
S. T.
,
1988
, “
Forced Periodic Vibration of Unsymmetric Piecewise-Linear Systems
,”
J. Sound Vib.
,
121
(
1
), pp.
117
126
.
6.
Heiman
,
M. S.
,
Bajaj
,
A. K.
, and
Sherman
,
P. J.
,
1988
, “
Periodic Motions and Bifurcations in Dynamics of an Inclined Impact Pair
,”
J. Sound Vib.
,
124
(
1
), pp.
55
78
.
7.
Shaw
,
S. W.
, and
Rand
,
R. H.
,
1989
, “
The Transition to Chaos in a Simple Mechanical System
,”
Int. J. Non-Linear Mech.
,
24
(
1
), pp.
41
56
.
8.
Li
,
G. X.
,
Rand
,
R. H.
, and
Moon
,
F. C.
,
1990
, “
Bifurcations and Chaos in a Forced Zero-Stiffness Impact Oscillator
,”
Int. J. Non-Linear Mech.
,
25
(
4
), pp.
417
432
.
9.
Natsiavas
,
S.
,
1990
, “
On the Dynamics of Oscillators With Bi-Linear Damping and Stiffness
,”
Int. J. Non-Linear Mech.
,
25
(
5
), pp.
535
554
.
10.
Natsiavas
,
S.
,
1993
, “
Dynamics of Multiple-Degree-of-Freedom Oscillators With Colliding Components
,”
J. Sound Vib.
,
165
(
3
), pp.
439
453
.
11.
Nigm
,
M. M.
, and
Shabana
,
A. A.
,
1983
, “
Effect of an Impact Damper on a Multi-Degree of Freedom System
,”
J. Sound Vib.
,
89
(
4
), pp.
541
557
.
12.
Björkenstam
,
U.
,
1977
, “
Impact Vibration of a Bar
,”
Int. J. Mech. Sci.
,
19
(
8
), pp.
471
481
.
13.
Masri
,
S.
,
Mariamy
,
Y.
, and
Anderson
,
J.
,
1981
, “
Dynamic Response of a Beam With a Geometric Nonlinearity
,”
ASME J. Appl. Mech.
,
48
(
2
), pp.
404
410
.
14.
Metallidis
,
P.
, and
Natsiavas
,
S.
,
2000
, “
Vibration of a Continuous System With Clearance and Motion Constraints
,”
Int. J. Non-Linear Mech.
,
35
(
4
), pp.
675
690
.
15.
Liu
,
S.
,
Cheng
,
Q.
,
Zhao
,
D.
, and
Feng
,
L.
,
2016
, “
Theoretical Modeling and Analysis of Two-Degree-of-Freedom Piezoelectric Energy Harvester With Stopper
,”
Sens. Actuators A: Phys.
,
245
, pp.
97
105
.
16.
Soliman
,
M. S. M.
,
Abdel-Rahman
,
E. M.
,
El-Saadany
,
E. F.
, and
Mansour
,
R. R.
,
2008
, “
A Wideband Vibration-Based Energy Harvester
,”
J. Micromech. Microeng.
,
18
(
11
), p.
115021
.
17.
Halim
,
M. A.
, and
Park
,
J. Y.
,
2014
, “
Theoretical Modeling and Analysis of Mechanical Impact Driven and Frequency Up-Converted Piezoelectric Energy Harvester for Low-Frequency and Wide-Bandwidth Operation
,”
Sens. Actuators A: Phys.
,
208
, pp.
56
65
.
18.
Wu
,
Y.
,
Badel
,
A.
,
Formosa
,
F.
,
Liu
,
W.
, and
Agbossou
,
A.
,
2014
, “
Nonlinear Vibration Energy Harvesting Device Integrating Mechanical Stoppers Used as Synchronous Mechanical Switches
,”
J. Intell. Mater. Syst. Struct.
,
25
(
14
), pp.
1658
1663
.
19.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2008
,
Linear and Nonlinear Structural Mechanics
,
Wiley
, Hoboken, NJ.
20.
Farokhi
,
H.
,
Ghayesh
,
M. H.
, and
Hussain
,
S.
,
2016
, “
Large-Amplitude Dynamical Behaviour of Microcantilevers
,”
Int. J. Eng. Sci.
,
106
, pp.
29
41
.
21.
Abdalla
,
M. M.
,
Reddy
,
C. K.
,
Faris
,
W. F.
, and
Gürdal
,
Z.
,
2005
, “
Optimal Design of an Electrostatically Actuated Microbeam for Maximum Pull-In Voltage
,”
Comput. Struct.
,
83
(
15–16
), pp.
1320
1329
.
22.
Allgower
,
E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
You do not currently have access to this content.