A six-node incompatible graded finite element is developed and studied. Such element is recommended for use since it is more accurate than four-node compatible element and more efficient than eight-node compatible element in two-dimensional plane elasticity. This paper presents comparison between six-node incompatible (QM6) and four-node compatible (Q4) graded elements. Numerical solution is obtained from abaqus using UMAT capability of the software and exact solution is provided as reference for comparison. A graded plate with exponential and linear gradation subjected to traction and bending load is considered. Additionally, three-node triangular (T3) and six-node triangular (T6) graded elements are compared to QM6 element. Incompatible graded element is shown to give better performance in terms of accuracy and computation time over other element formulations for functionally graded materials (FGMs).

References

References
1.
Santare
,
M. H.
, and
Lambros
,
J.
,
2000
, “
Use of Graded Finite Elements to Model the Behavior of Nonhomogeneous Materials
,”
ASME J. Appl. Mech.
,
67
(
4
), pp.
819
822
.
2.
Kim
,
J.
, and
Paulino
,
G. H.
,
2002
, “
Isoparametric Graded Finite Elements for Nonhomogeneous Isotropic and Orthotropic Materials
,”
ASME J. Appl. Mech.
,
69
(
4
), pp.
502
514
.
3.
Kim
,
J.
, and
Paulino
,
G. H.
,
2002
, “
Finite Element Evaluation of Mixed Mode Stress Intensity Factors in Functionally Graded Materials
,”
Int. J. Numer. Methods Eng.
,
53
(
8
), pp.
1903
1935
.
4.
Kim
,
J.
, and
Paulino
,
G. H.
,
2003
, “
T-Stress, Mixed-Mode Stress Intensity Factors, and Crack Initiation Angles in Functionally Graded Materials: A Unified Approach Using the Interaction Integral Method
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
11–12
), pp.
1463
1494
.
5.
Kim
,
J.
, and
Paulino
,
G. H.
,
2003
, “
An Accurate Scheme for Mixed‐Mode Fracture Analysis of Functionally Graded Materials Using the Interaction Integral and Micromechanics Models
,”
Int. J. Numer. Methods Eng.
,
58
(
10
), pp.
1457
1497
.
6.
Kim
,
J.
, and
Paulino
,
G. H.
,
2003
, “
Mixed-Mode J-Integral Formulation and Implementation Using Graded Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials
,”
Mech. Mater.
,
35
(
1–2
), pp.
107
128
.
7.
Paulino
,
G. H.
, and
Kim
,
J.
,
2004
, “
A New Approach to Compute T-Stress in Functionally Graded Materials by Means of the Interaction Integral Method
,”
Eng. Fract. Mech.
,
71
(
13–14
), pp.
1907
1950
.
8.
Kim
,
J.
, and
Paulino
,
G. H.
,
2005
, “
Consistent Formulations of the Interaction Integral Method for Fracture of Functionally Graded Materials
,”
ASME J. Appl. Mech.
,
72
(
3
), pp.
351
364
.
9.
Schmauder
,
S.
, and
Weber
,
U.
,
2001
, “
Modelling of Functionally Graded Materials by Numerical Homogenization
,”
Arch. Appl. Mech.
,
71
(
2–3
), pp.
182
192
.
10.
Lee
,
Y. D.
, and
Erdogan
,
F.
,
1994
, “
Residual/Thermal Stresses in FGM and Laminated Thermal Barrier Coatings
,”
Int. J. Fract.
,
69
(
2
), pp.
145
165
.
11.
Wang
,
B. L.
,
Han
,
J. C.
, and
Du
,
S. Y.
,
2000
, “
Thermoelastic Fracture Mechanics for Nonhomogeneous Material Subjected to Unsteady Thermal Load
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
87
95
.
12.
Jha
,
D. K.
,
Kant
,
T.
, and
Singh
,
R. K.
,
2013
, “
A Critical Review of Recent Research on Functionally Graded Plates
,”
Compos. Struct.
,
96
, pp.
833
849
.
13.
Buttlar
,
W. G.
,
Paulino
,
G. H.
, and
Song
,
S. H.
,
2006
, “
Application of Graded Finite Elements for Asphalt Pavements
,”
J. Eng. Mech.
,
132
(
3
), pp.
240
249
.
14.
Zhang
,
Z. J.
, and
Paulino
,
G. H.
,
2005
, “
Cohesive Zone Modeling of Dynamic Failure in Homogeneous and Functionally Graded Materials
,”
Int. J. Plast.
,
21
(
6
) pp.
1195
1254
.
15.
Almajid
,
A.
,
Taya
,
M.
, and
Hudnut
,
S.
,
2001
, “
Analysis of Out-of-Plane Displacement and Stress Field in a Piezocomposite Plate With Functionally Graded Microstructure
,”
Int. J. Solids Struct.
,
38
(
19
), pp.
3377
3391
.
16.
Paulino
,
G. H.
, and
Kim
,
J.
,
2007
, “
The Weak Patch Test for Nonhomogeneous Materials Modeled With Graded Finite Elements
,”
J. Braz. Soc. Mech. Sci. Eng.
,
29
(
1
), pp.
63
81
.
17.
Jeyakarthikeyan
,
P. V.
,
Subramanian
,
G.
, and
Yogeshwaran
,
R.
,
2017
, “
An Alternate Stable Midpoint Quadrature to Improve the Element Stiffness Matrix of Quadrilaterals for Application of Functionally Graded Materials (FGM)
,”
Comput. Struct.
,
178
, pp.
71
87
.
18.
Fish
,
J.
, and
Belytshko
,
T.
,
2007
,
A First Course in Finite Elements
, Vol.
1
,
Wiley
,
New York
.
19.
Wilson
,
E. L.
,
Taylor
,
R. L.
,
Doherty
,
W. P.
, and
Ghaboussi
,
J.
,
1973
, “
Incompatible Displacement Models
,”
Numerical and Computer Methods in Structural Mechanics
, Elsevier, Hoboken, NJ, pp.
43
57
.
20.
Irons
,
B. M.
, and
Razzaque
,
A.
,
1972
, “
Experience With the Patch Test for Convergence of Finite Elements
,”
The Mathematical Foundations of the Finite Element Method With Applications to Partial Differential Equations
, Acedemic Press, Cambridge, MA, pp.
557
–5
87
.
21.
Taylor
,
R. L.
,
Beresford
,
P. J.
, and
Wilson
,
E. L.
,
1976
, “
A Non‐conforming Element for Stress Analysis
,”
Int. J. Numer. Methods Eng.
,
10
(
6
), pp.
1211
1219
.
22.
Wilson
,
E. L.
,
2000
,
Three-Dimensional Static and Dynamic Analysis of Structures
,
CSI
,
Berkeley, CA
.
23.
Abaqus,
2013
, “
Manual, Abaqus Users, Version 6.13-2
,” Dassault Systémes Simulia Corp., Providence, RI.
24.
Erdogan
,
F.
, and
Wu
,
B. H.
,
1997
, “
The Surface Crack Problem for a Plate With Functionally Graded Properties
,”
ASME J. Appl. Mech.
,
64
(
3
), pp.
449
456
.
25.
Erdogan
,
F.
, and
Wu
,
B. H.
,
1996
, “
Crack Problems in FGM Layers Under Thermal Stresses
,”
J. Therm. Stresses
,
19
(
3
), pp.
237
265
.
26.
Cook
,
R. D.
,
2007
,
Concepts and Applications of Finite Element Analysis
,
Wiley
, Hoboken, NJ.
27.
Ju
,
S.-B.
, and
Sin
,
H.-C.
,
1996
, “
New Incompatible Four-Noded Axisymmetric Elements With Assumed Strains
,”
Comput. Struct.
,
60
(
2
), pp.
269
278
.
28.
Burlayenko
,
V. N.
,
Altenbach
,
H.
,
Sadowski
,
T.
,
Dimitrova
,
S. D.
, and
Bhaskar
,
A.
,
2017
, “
Modelling Functionally Graded Materials in Heat Transfer and Thermal Stress Analysis by Means of Graded Finite Elements
,”
Appl. Math. Modell.
,
45
, pp.
422
438
.
29.
Hughes
,
D.
,
Atkins
,
J. F.
, and
Thompson
,
S.
,
1987
, “
Mutants of Elongation Factor Tu Promote Ribosomal Frameshifting and Nonsense Readthrough
,”
EMBO J.
,
6
(
13
), pp.
4235
4239
.
30.
Carbonari
,
R. C.
,
Silva
,
E. C. N.
, and
Paulino
,
G. H.
,
2006
, “
Design of Functionally Graded Piezoelectric Actuators Using Topology Optimization
,”
Proc. SPIE
,
6166
, p. 616607.
31.
Piltner
,
R.
, and
Taylor
,
R. L.
,
2000
, “
Triangular Finite Elements With Rotational Degrees of Freedom and Enhanced Strain Modes
,”
Comput. Struct.
,
75
(
4
), pp.
361
368
.
32.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2005
,
The Finite Element Method for Solid and Structural Mechanics
,
Elsevier
, Amsterdam, The Netherlands.
33.
Hughes
,
T. J. R.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
, North Chelmsford, MA.
You do not currently have access to this content.