This paper details a numerical study of the dynamic stability of a cylindrical shell structure under combined hydrostatic and dynamic pressure loading within a tubular environment as compared to the traditional loading of hydrostatic pressure alone. Simulations are executed using a coupled Eulerian–Lagrangian scheme, within the dynamic system mechanics advanced simulation (DYSMAS) code, to explicitly model the (1) structural response of a single unstiffened cylindrical shell to dynamic pressure loading and (2) the fluid flow field within the surrounding environment due to the shock and the shell structural response. Simulations involve a non-pressure-compensated aluminum 6061-T6 cylindrical structure with a length-to-diameter ratio, L/D, equal to 9.6. This structure is 31.8 mm (1.25-in) in outer diameter and is concentrically and longitudinally centered within the outer tube, which has an inner diameter of 177.8 mm (7.00-in) and total internal length of 2.13 m (84-in). Simulations are run at four hydrostatic tank pressures, which are categorized by percentage of measured critical collapse pressure, Pc, of the shell structure: 66% Pc, 80% Pc, 85% Pc, and 90%Pc. For each case, the shell structure is subjected to shock loading created by the detonation of a commercial blasting cap at a given standoff to the structure within the confining tube. Simulated pressure histories are compared to experimental pressure data at gage locations. The simulations and corresponding experiments produce the same overall result for three of four cases (i.e., survive: 66%Pc or implode: 85%Pc and 90%Pc). For the 80%Pc case, the overall result differs between simulation and experiment in that the specimen in the experiment survives but the simulated cylinder implodes. However, the discrepancy between the overall experimental result and corresponding simulation is not deemed a failure for the 80%Pc case; instead, this signifies a transitional case for the dynamic stability of the shell structure (i.e., collapse is sensitive to small deviations from assumed conditions in this regime).

References

References
1.
Mesloh
,
R. E.
,
Sorenson
,
J. E.
, and
Atterbury
,
T. J.
,
1973
, “
Buckling—and Offshore Pipelines
,”
Gas
,
49
, pp.
40
43
.
2.
Palmer
,
A. C.
, and
Martin
,
J. H.
,
1975
, “
Buckle Propagation in Submarine Pipelines
,”
Nature
,
254
(
5495
), pp.
46
48
.
3.
Turner
,
S. E.
, and
Ambrico
,
J. M.
,
2012
, “
Underwater Implosion of Cylindrical Metal Tubes
,”
ASME J. Appl. Mech.
,
80
(
1
), p.
011013
.
4.
LeBlanc
,
J. M.
,
Ambrico
,
J. M.
, and
Turner
,
S. E.
, 2014, “
Underwater Implosion Mechanics: Experimental and Computational Overview
,”
Blast Mitigation—Experimental and Numerical Studies
,
Springer
,
New York
.
5.
Cartlidge
,
E.
,
2001
, “
Accident Grounds Neutrino Lab
,” IOP Publishing, Bristol, UK, accessed Apr.15, 2016, www.physicsworld.com
6.
Woods Hole Oceanographic Institution, 2014, “
Robotic Deep-Sea Vehicle Lost on Dive to 6-Mile Depth
,” Woods Hole Oceanographic Institution, Woods Hole, MA, accessed Apr. 15, 2016, http://www.whoi.edu/news-release/Nereus-Lost
7.
Diwan
,
M.
,
Dolph
,
J.
,
Ling
,
J.
,
Russo
,
T.
,
Sharma
,
R.
,
Sexton
,
K.
,
Simos
,
N.
,
Stewart
,
J.
,
Tanaka
,
H.
,
Arnold
,
D.
,
Tabor
,
P.
, and
Turner
,
S.
,
2012
, “
Underwater Implosions of Large Format Photo-Multiplier Tubes
,”
Nucl. Instrum. Methods Phys. Res. A
,
670
, pp.
61
67
.
8.
Isaacs
,
J. D.
, and
Maxwell
,
A. E.
,
1952
, “
The Ball-Breaker—A Deep Water Signalling Device
,”
J. Mar. Res.
,
11
, pp.
63
68
.
9.
Urick
,
R. J.
,
1963
, “
Implosions as Sources of Underwater Sound
,”
J. Acoust. Soc. Am.
,
35
(
12
), pp.
2026
2027
.
10.
Vanzant
,
B.
,
Russell
,
J.
,
Schraeder
,
A.
, and
DeHart
,
R.
,
1967
, “Near-Field Pressure Response Due to a Sphere Imploding in Water,”
Southwest Research Institute
,
San Antonio, TX
, Report No. 1938-1.
11.
Vath
,
F.
, and
Colletti
,
W.
, 1968,
Development of Buoyancy Material for the Deep Submergence Search Vehicle: Evaluation of Sympathetic Implosion of Buoyancy Modules
,
U.S. Naval Applied Science Laboratory
,
Brooklyn, New York
.
12.
Orr
,
M.
, and
Schoenberg
,
M.
,
1976
, “
Acoustic Signatures From Deep Water Implosions of Spherical Cavities
,”
J. Acoust. Soc. Am.
,
59
(
5
), pp.
1155
1159
.
13.
Turner
,
S. E.
,
2007
, “
Underwater Implosion of Glass Spheres
,”
J. Acoust. Soc. Am.
,
121
(
2
), pp.
844
852
.
14.
Farhat
,
C.
,
Wang
,
K. G.
,
Main
,
A.
,
Kyriakides
,
S.
,
Lee
,
L.-H.
,
Ravi-Chandar
,
K.
, and
Belytschko
,
T.
,
2013
, “
Dynamic Implosion of Underwater Cylindrical Shells: Experiments and Computations
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2943
2961
.
15.
Gupta
,
S.
,
Parameswaran
,
V.
,
Sutton
,
M.
, and
Shukla
,
A.
,
2014
, “
Study of Dynamic Underwater Implosion Mechanics Using Digital Image Correlation
,”
Proc. R. Soc. A
,
470
, p. 20140576.
16.
Pinto
,
M.
,
Gupta
,
S.
, and
Shukla
,
A.
,
2015
, “
Study of Implosion of Carbon/Epoxy Composite Hollow Cylinders Using 3-D Digital Image Correlation
,”
Compos. Struct.
,
119
, pp.
272
286
.
17.
Luton
,
A.
,
Harris
,
G.
,
McGrath
,
T.
,
McKeown
,
R.
,
Clair
,
J. S.
,
Babcock
,
W.
, and
Wardlaw
,
A.
,
2016
, “
Overview of the Dynamic System Mechanics Advanced Simulation (DYSMAS)
,”
24th International Symposium on the Military Aspects of Blast and Shock, Halifax
,
NS, Canada
,
Sept. 18–23
.
18.
Chamberlin
,
R. E.
, and
Guzas
,
E. L.
,
2014
, “
Trends in Energy Released in Underwater Implosions
,”
U. S. Navy J. Underwater Acoust.
,
62
, pp.
549
566
.
19.
Chamberlin
,
R. E.
,
Guzas
,
E. L.
, and
Ambrico
,
J. M.
,
2014
, “
Energy Balance During Underwater Implosion of Ductile Metallic Cylinders
,”
J. Acoust. Soc. Am.
,
136
(
5
), pp.
2489
2496
.
20.
Gupta
,
S.
,
LeBlanc
,
J. M.
, and
Shukla
,
A.
,
2014
, “
Mechanics of the Implosion of Cylindrical Shells in a Confining Tube
,”
Int. J. Solids Struct.
,
51
(
23–24
), pp.
3996
4014
.
21.
Gupta
,
S.
,
LeBlanc
,
J. M.
, and
Shukla
,
A.
,
2015
, “
Sympathetic Underwater Implosion in a Confining Environment
,”
Extreme Mech. Lett.
,
3
, pp.
123
129
.
22.
Gupta
,
S.
,
LeBlanc
,
J. M.
, and
Shukla
,
A.
,
2015
, “
Implosion of Longitudinally Off-Centered Cylindrical Volumes in a Confining Environment
,”
ASME J. Appl. Mech.
,
82
, p.
051001
.
23.
Bitter
,
N. P.
, and
Shepherd
,
J. E.
, “
Dynamic Buckling and Fluid–Structure Interaction of Submerged Tubular Structures
,”
Blast Mitigation—Experimental and Numerical Studies
,
A.
Shukla
,
Y. D. S.
Rajapakse
and
M. E.
Hynes
, eds., Springer-Verlag, New York, pp.
189
227
.
24.
Gupta
,
S.
,
Shukla
,
A.
,and
LeBlanc
,
J.
,
2016
, “
Shock Initiated Instabilities in Underwater Cylindrical Structures
,”
J. Mech. Phys. Solids
,
95
, pp.
188
212
.
25.
Gupta
,
S.
, Shukla, A., and LeBlanc, J.,
2013
, “
Shock Initiated Implosion of a Tube Within a Closed Tube: Experiments and Computational Simulations
,”
ASME Paper No. IMECE 2013-63765
.
26.
Wang
,
K.
,
2016
, “
Multiphase Fluid-Solid Coupled Analysis of Shock-Bubble-Stone Interaction in Shockwave Lithotripsy
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
10
), p. e2855.
27.
Gupta
,
S.
,
2015
, “
Underwater Implosion of Cylindrical Metallic Shells in Confining Environments
,”
Ph.D. dissertation
, University of Rhode Island, Kingston, RI.https://digitalcommons.uri.edu/oa_diss/326/
28.
Teledyne RISI Inc.
, 2018, “
RP-80 EBW Detonator
,” Teledyne RISI Inc., Tracy, CA, accessed Nov. 29, 2018, http://www.teledynerisi.com/products-services/ebw-detonators/rp-80-ebw-detonator
29.
Whirley
,
R.
, and
Engelmann
,
B.
,
1993
, “DYNA3D: A Nonlinear, Explicit, Three-Dimensional Finite Element Code for Solid and Structural Mechanics, User Manual,”
Lawrence Livermore National Lab
,
Livermore, CA
, Report No.
UCRL-MA-107254-Rev.1 ON: DE94009374
.https://www.osti.gov/biblio/10139227-dyna3d-nonlinear-explicit-three-dimensional-finite-element-code-solid-structural-mechanics-user-manual-revision
30.
De Groot
,
A. J.
,
Sherwood
,
R. J.
, and
Durrenberger
,
J. K.
,
2011
, “ParaDyn: A Parallel Nonlinear Explicit, Three-Dimensional Finite-Element Code for Solid and Structural Mechanics: Version 11.1,”
Lawrence Livermore National Lab
,
Livermore, CA
, Report No.
UCRL-MA-140943
.https://e-reports-ext.llnl.gov/pdf/520969.pdf
31.
Farhat
,
C.
,
Rallu
,
A.
,
Wang
,
K.
, and
Belytschko
,
T.
,
2010
, “
Robust and Provably Second-Order Explicit-Explicit and Implicit-Explicit Staggered Time-Integrators for Highly Nonlinear Fluid-Structure Interaction Problems
,”
Int. J. Numer. Methods Eng.
,
84
(
1
), pp.
73
107
.
32.
Menikoff
,
R.
,
2017
, “
JWL Equation of State
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-15-29536
.https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-15-29536
You do not currently have access to this content.