This work proposes a novel strategy to render mixed boundary conditions on circular linear elastic homogeneous domain to displacement-based condition all along the surface. With Michell solution as the starting point, the boundary conditions and extent of the domain are used to associate the appropriate type and number of terms in the Airy stress function. Using the orthogonality of sine and cosine functions, the modified boundary conditions lead to a system of linear equations for the unknown coefficients in the Airy stress function. Solution of the system of linear equations provides the Airy stress function and subsequently stresses and displacement. The effectiveness of the present approach in terms of ease of implementation, accuracy, and versatility to model variants of circular domain is demonstrated through excellent comparison of the solution of following problems: (i) annulus with mixed boundary conditions on outer radius and prescribed traction on the inner radius, (ii) cavity surface with mixed boundary conditions in an infinite plane subjected to far-field uniaxial loading, and (iii) circular disc constrained on part of the surface and subjected to uniform pressure on rest of the surface.

References

References
1.
Little
,
R.
,
1973
,
Elasticity
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Barber
,
J. R.
,
2004
,
Elasticity
,
2nd ed.
,
Kluwer Academic Publishers
,
New York
.
3.
Jog
,
C. S.
,
2015
,
Continuum Mechanics: Foundations and Applications of Mechanics
,
3rd ed.
, Vol.
1
,
Cambridge University Press
,
New Delhi, India
.
4.
Sneddon
,
I. N.
,
1966
,
Mixed Boundary Value Problems in Potential Theory
,
North-Holland
,
Amsterdam, The Netherlands
.
5.
Muskhelishvili
,
N.
,
1977
,
Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion, and Bending
, translated from Russian, 2nd ed., Noordhoff International Publishing, Leyden, The Netherlands.
6.
Fabrikant
,
V.
,
1989
,
Applications of Potential Theory in Mechanics: A Selection of New Results
, Vol.
51
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
7.
Duffy
,
D.
,
2008
,
Mixed Boundary Value Problems
,
Chapman & Hall/CRC
,
Boca Raton, FL
.
8.
Shepherd
,
W.
,
1938
, “
On Trigonometrical Series With Mixed Conditions
,”
Proc. London Math. Soc.
,
2
(
1
), pp.
366
375
.
9.
Kelman
,
R. B.
,
Maheffy
,
J. P.
, and
Simpson
,
J. T.
,
1977
, “
Algorithms for Classic Dual Trigonometric Equations
,”
Comput. Math. Appl.
,
3
(
3
), pp.
203
215
.
10.
Noble
,
B.
, and
Hussain
,
M.
,
1969
, “
Exact Solution of Certain Dual Series for Indentation and Inclusion Problems
,”
Int. J. Eng. Sci.
,
7
(
11
), pp.
1149
1161
.
11.
Srivastav
,
R.
,
1963
, “
XVI—Dual Series Relations—Part III: Dual Relations Involving Trigonometric Series
,”
Proc. R. Soc. Edinburgh Sect. A: Math.
,
66
(
3
), pp.
173
184
.
12.
Tranter
,
C.
,
1964
, “
An Improved Method for Dual Trigonometrical Series
,”
Glasgow Math. J.
,
6
(
3
), pp.
136
140
.
13.
Milne-Thomson
,
L. M.
,
1968
,
Plane Elastic Systems
,
Springer
,
Berlin
.
14.
England
,
A. H.
,
2003
,
Complex Variable Methods in Elasticity
,
Courier Corporation
,
Mineola, NY
.
15.
Jian-Ke
,
L.
,
1995
,
Complex Variable Methods in Plane Elasticity
, Vol.
22
,
World Scientific
,
Singapore
.
16.
Hung
,
K.-M.
, and
Huang
,
Y.-H.
,
2017
, “
Theoretical Analysis and Photoelastic Experiment on Full-Field Stress From Multi-Concentrated Forces on Circumference
,”
Acta Mech.
,
5
(
228
), pp.
1597
1619
.
17.
Tokovyy
,
Y. V.
, and
Ma
,
C.-C.
,
2009
, “
Analytical Solutions to the Planar Non-Axisymmetric Elasticity and Thermoelasticity Problems for Homogeneous and Inhomogeneous Annular Domains
,”
Int. J. Eng. Sci.
,
47
(
3
), pp.
413
437
.
18.
Chen
,
H. S. S.
, and
Dick
,
D. D. C.
,
1969
, “
Elastostatic Problems of Arbitrarily Shaped Doubly Connected Plates
,”
J. Hydronautics
,
3
(
4
), pp.
196
198
.
19.
Buchwald
,
V. T.
, and
Davies
,
G. A. O.
,
1964
, “
Plane Elastostatic Boundary Value Problems of Doubly Connected Regions I
,”
Q. J. Mech. Appl. Math.
,
17
(
1
), pp.
1
15
.
20.
Goree
,
J.
,
1965
, “
Approximate Determination of Contact Stresses in an Infinite Plate Containing a Smooth Rigid Elliptic Insert
,”
ASME J. Appl. Mech.
,
32
(
2
), pp.
437
439
.
21.
Crouch
,
S.
, and
Mogilevskaya
,
S.
,
2006
, “
Loosening of Elastic Inclusions
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1638
1668
.
22.
Kushch
,
V.
,
Shmegera
,
S.
, and
Mishnaevsky
,
L.
, Jr.
,
2010
, “
Elastic Interaction of Partially Debonded Circular Inclusions—Part I: Theoretical Solution
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1961
1971
.
23.
Chen
,
C.
, and
Cheng
,
S.
,
1967
, “
Mechanical Properties of Fiber Reinforced Composites
,”
J. Compos. Mater.
,
1
(
1
), pp.
30
41
.
24.
Heaton
,
M.
,
1968
, “
A Calculation of the Elastic Constants of a Unidirectional Fibre-Reinforced Composite
,”
J. Phys. D: Appl. Phys.
,
1
(
8
), p.
1039
.
25.
Drago
,
A. S.
, and
Pindera
,
M.-J.
,
2008
, “
A Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases
,”
ASME J. Appl. Mech.
,
75
(
5
), p.
051010
.
26.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
1977
,
The Finite Element Method
, Vol.
3
,
McGraw-Hill
,
London
.
27.
Banerjee
,
P. K.
, and
Butterfield
,
R.
,
1981
,
Boundary Element Methods in Engineering Science
, Vol.
17
,
McGraw-Hill
,
London
.
28.
Zill
,
D.
,
Wright
,
W. S.
, and
Cullen
,
M. R.
,
2014
,
Advanced Engineering Mathematics
,
5th ed.
,
Jones & Bartlett Learning
,
Boston, MA
.
29.
Huth
,
J.
,
1952
, “
Thermal Stresses in a Partially Clamped Elastic Half-Plane
,”
J. Appl. Phys.
,
23
(
11
), pp.
1234
1237
.
30.
Sharfuddin
,
S.
,
1967
, “
Loaded Loose-Fitted Rough Circular Rigid Pin in a Circular Hole
,”
Acta Mech.
,
3
(
4
), pp.
376
384
.
31.
Barber
,
J.
,
2010
,
Elasticity
,
3rd ed.
, Vol.
172
,
Springer
,
New York
.
32.
Sinclair
,
G. B.
,
2004
, “
Stress Singularities in Classical Elasticity—Part I: Removal, Interpretation, and Analysis
,”
Appl. Mech. Rev.
,
57
(
4
), pp.
251
298
.
33.
Ting
,
T.
,
1985
, “
Asymptotic Solution Near the Apex of an Elastic Wedge With Curved Boundaries
,”
Q. Appl. Math.
,
42
(
4
), pp.
467
476
.
34.
Lanczos
,
C.
,
1956
,
Applied Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.
35.
Multiphysics
,
C.
,
2017
, “
COMSOL Multiphysics User Guide (Version 5.3)
,” COMSOL AB, Stockholm, Sweden.
36.
Buchwald
,
V.
,
1963
, “
A Note on a Method of Milne-Thomson
,”
J. Aust. Math. Soc.
,
3
(
1
), pp.
93
98
.
37.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, Vol.
3
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.