The alternating stop-band characteristics of periodic structures have been widely used for narrow band vibration control applications. The objective of this work is to extend this idea for broadband excitations. Toward this end, we seek to synthesize a longitudinal and a flexural periodic structure having the largest fraction of the frequencies falling in the attenuation bands of the structure. Such a periodic structure when subjected to broadband excitation has minimal transmission of the response away from the source of excitation. The unit cell of such a periodic structure is constituted of two distinct regions having different inertial and stiffness properties. We derive guidelines for suitable selection of inertial and stiffness properties of the two regions in the unit cell such that the maximal frequency region corresponds to attenuation bands of the periodic structure. It is found that maximal dissimilarity between the neighboring regions of the unit cell leads to maximal attenuating frequencies. In the extreme case, it is found that more than 98% of the frequencies are blocked. For seismic excitations, it is shown that large, finite periodic structures corresponding to the optimal unit cell derived using the infinite periodic structure theory has significant vibration isolation benefits in comparison to a homogeneous structure or an arbitrarily chosen periodic structure.

References

References
1.
Brillouin
,
L.
,
2003
,
Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices
,
Courier Corporation
,
New York
.
2.
Mead
,
D. J.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
3.
Mead
,
D. J.
, and
Bardell
,
N.
,
1987
, “
Free Vibration of a Thin Cylindrical Shell With Periodic Circumferential Stiffeners
,”
J. Sound Vib.
,
115
(
3
), pp.
499
520
.
4.
Mead
,
D. J.
,
1971
, “
Vibration Response and Wave Propagation in Periodic Structures
,”
J. Eng. Ind.
,
93
(
3
), pp.
783
792
.
5.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems—I: Mono-Coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.
6.
Mead
,
D. J.
,
1986
, “
A New Method of Analyzing Wave Propagation in Periodic Structures; Applications to Periodic Timoshenko Beams and Stiffened Plates
,”
J. Sound Vib.
,
104
(
1
), pp.
9
27
.
7.
Mead
,
D. J.
, and
Yaman
,
Y.
,
1991
, “
The Harmonic Response of Rectangular Sandwich Plates With Multiple Stiffening: A Flexural Wave Analysis
,”
J. Sound Vib.
,
145
(
3
), pp.
409
428
.
8.
Phani
,
A. S.
,
Woodhouse
,
J.
, and
Fleck
,
N.
,
2006
, “
Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Acoust. Soc. Am.
,
119
(
4
), pp.
1995
2005
.
9.
Floquet
,
G.
,
1883
, “
On the Linear Differential Equations With Periodic Coefficients
,”
Ann. Sci. L'École Norm. Supérieure
,
12
, pp.
47
88
.
10.
Mead
,
D.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
11.
Orris
,
R. M.
, and
Petyt
,
M.
,
1974
, “
A Finite Element Study of Harmonic Wave Propagation in Periodic Structures
,”
J. Sound Vib.
,
33
(
2
), pp.
223
236
.
12.
Esquivel-Sirvent
,
R.
, and
Cocoletzi
,
G.
,
1994
, “
Band Structure for the Propagation of Elastic Waves in Superlattices
,”
J. Acoust. Soc. Am.
,
95
(
1
), pp.
86
90
.
13.
Sigalas
,
M.
, and
Economou
,
E. N.
,
1993
, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
,
86
(
3
), pp.
141
143
.
14.
Leamy
,
M. J.
,
2012
, “
Exact Wave-Based Bloch Analysis Procedure for Investigating Wave Propagation in Two-Dimensional Periodic Lattices
,”
J. Sound Vib.
,
331
(
7
), pp.
1580
1596
.
15.
Lee
,
E. H.
, and
Yang
,
W. H.
,
1973
, “
On Waves in Composite Materials With Periodic Structure
,”
SIAM J. Appl. Math.
,
25
(
3
), pp.
492
499
.
16.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
,
2006
, “
Dispersive Elastodynamics of 1D Banded Materials and Structures: Analysis
,”
J. Sound Vib.
,
289
(
4–5
), pp.
779
806
.
17.
Lee
,
S. Y.
, and
Ke
,
H. Y.
,
1992
, “
Flexural Wave Propagation in an Elastic Beam With Periodic Structure
,”
ASME J. Appl. Mech.
,
59
(
2S
), pp.
S189
S196
.
18.
Xiang
,
H.-J.
, and
Shi
,
Z.-F.
,
2009
, “
Analysis of Flexural Vibration Band Gaps in Periodic Beams Using Differential Quadrature Method
,”
Comput. Struct.
,
87
(
23–24
), pp.
1559
1566
.
19.
Gupta
,
G. S.
,
1970
, “
Natural Flexural Waves and the Normal Modes of Periodically-Supported Beams and Plates
,”
J. Sound Vib.
,
13
(
1
), pp.
89
101
.
20.
Wen
,
J.
,
Wang
,
G.
,
Yu
,
D.
,
Zhao
,
H.
, and
Liu
,
Y.
,
2005
, “
Theoretical and Experimental Investigation of Flexural Wave Propagation in Straight Beams With Periodic Structures: Application to a Vibration Isolation Structure
,”
J. Appl. Phys.
,
97
(
11
), p.
114907
.
21.
Hussein
,
M. I.
,
Hamza
,
K.
,
Hulbert
,
G. M.
,
Scott
,
R. A.
, and
Saitou
,
K.
,
2006
, “
Multiobjective Evolutionary Optimization of Periodic Layered Materials for Desired Wave Dispersion Characteristics
,”
Struct. Multidiscip. Optim.
,
31
(
1
), pp.
60
75
.
22.
Olhoff
,
N.
,
Niu
,
B.
, and
Cheng
,
G.
,
2012
, “
Optimum Design of Band-Gap Beam Structures
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3158
3169
.
23.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
24.
Lin
,
W.-W.
,
1987
, “
A New Method for Computing the Closed-Loop Eigenvalues of a Discrete-Time Algebraic Riccati Equation
,”
Linear Algebra Appl.
,
96
, pp.
157
180
.
25.
Nayfeh
,
A. H.
,
2011
,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
26.
Zhong
,
W.
, and
Williams
,
F.
,
1992
, “
Wave Problems for Repetitive Structures and Symplectic Mathematics
,”
Proc. Inst. Mech. Eng., Part C
,
206
(
6
), pp.
371
379
.
27.
Fahy
,
F. J.
, and
Gardonio
,
P.
,
2007
,
Sound and Structural Vibration: Radiation, Transmission and Response
,
Elsevier
,
London
.
You do not currently have access to this content.