Exact steady-state solutions are obtained for the motion of an single-degree-of-freedom (SDOF) system that is provided with a highly nonlinear auxiliary mass damper (AMD), which resembles a conventional dynamic vibration neutralizer (DVN), whose relative motion with respect to the primary system is constrained to remain within a specified gap, thus operating as a “pounding DVN.” This configuration of a conventional DVN with motion-limiting stops could be quite useful when a primary structure with a linear DVN is subjected to transient loads (e.g., earthquakes) that may cause excessive relative motion between the auxiliary and primary systems. Under the assumption that the motion of the nonlinear system under harmonic excitation is undergoing steady-state motion with two impacts per period of the excitation, an exact, closed-form solution is obtained for the system motion. This solution is subsequently used to develop an approximate analytical solution for the stationary response of the pounding DVN when subjected to random excitation with white spectral density and Gaussian probability distribution. Comparison between the analytically estimated rms response of the primary system and its corresponding response obtained via numerical simulation shows that the analytical estimates are quite accurate when the coupling (tuning parameters) between the primary system and the damper are weak, but only moderately accurate when the linear components of the tuning parameters are optimized. It is also shown that under nonstationary, the pounding DVN provides slightly degraded performance compared to the linear one but simultaneously limits the damper-free motion to specified design constraints.

References

References
1.
Ormondroyd
,
J.
, and
Den Hartog
,
J. P.
,
1928
, “
The Theory of the Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
50
, pp.
9
22
.
2.
Timoshenko
,
S.
,
1928
, “
Discussion of the Theory of Dynamic Vibration Absorber
,”
ASME J. Appl. Mech.
,
50
, pp.
20
21
.
3.
Masri
,
S. F.
,
1972
, “
Theory of the Dynamic Vibration Neutralizer With Motion-Limiting Stops
,”
ASME J. Appl. Mech.
,
39
(
2
), pp.
563
568
.
4.
Wirsching
,
P. H.
, and
Campbell
,
G. W.
,
1974
, “
Minimal Structural Response Under Random Excitation Using Vibration Absorbers
,”
Earthq. Eng. Struct. Dyn.
,
2
(
4
), pp.
303
312
.
5.
Snowdon
,
J. C.
,
1974
, “
Vibration of Simply Supported Rectangular and Square Plates to Which Lumped Masses and Dynamic Vibration Absorbers Are Attached
,”
Acoust. Soc. Am.
,
2
, pp.
303
312
.
6.
Warburton
,
G. B.
,
1982
, “
Optimum Absorber Parameters for Various Combinations of Response and Excitation Parameters
,”
Earthq. Eng. Struct. Dyn.
,
10
(
3
), pp.
381
401
.
7.
Masri
,
S. F.
,
Miller
,
R. K.
,
Dehghanyar
,
T. J.
, and
Caughey
,
T. K.
,
1989
, “
Active Parameter Control of Nonlinear Vibrating Structures
,”
ASME J. Appl. Mech.
,
56
(
3
), pp.
658
666
.
8.
Jensen
,
H.
,
Setareh
,
M.
, and
Peek
,
R.
,
1991
, “
TMDS for Vibration Control of Systems With Uncertain Properties
,”
J. Struct. Eng.
,
118
(
12
), pp.
3285
3296
.
9.
Housner
,
G. W.
,
Bergman
,
L. A.
,
Caughey
,
T. K.
,
Chassiakos
,
A. G.
,
Claus
,
R. O.
,
Masri
,
S. F.
,
Skelton
,
R. E.
,
Soong
,
T. T.
,
Spencer
,
B. F.
, and
Yao
,
J. T. P.
,
1997
, “
Structural Control: Past, Present, and Future
,”
ASCE J. Eng. Mech.
,
123
(
9
), pp.
897
971
.
10.
Symans
,
D.
, and
Constantinou
,
M. C.
,
1999
, “
Semi-Active Control Systems for Seismic Protection of Structures: A State-of-the-Art Review
,”
Eng. Struct.
,
21
(
6
), pp.
469
487
.
11.
Worden
,
K.
, and
Tomlinson
,
G. R.
,
2001
,
Nonlinearity in Structural Dynamics: Detection, Identification and Modeling
,
Institute of Physics Press
, Bristol, UK.
12.
Nayeri
,
R. D.
,
Masri
,
S. F.
, and
Caffrey
,
J. P.
,
2007
, “
Studies of the Performance of Multi-Unit Impact Dampers Under Stochastic Excitation
,”
ASME J. Vib. Acoust.
,
129
(
2
), pp.
239
251
.
13.
Bekdas
,
G.
, and
Nigdeli
,
S. M.
,
2013
, “
Mass Ratio Factor for Optimum Tuned Mass Damper Strategies
,”
Int. J. Mech. Sci.
,
71
, pp.
801
836
.
14.
Gutierrez Soto
,
M.
, and
Adeli
,
H.
,
2013
, “
Tuned Mass Dampers
,”
Arch. Comput. Methods Eng.
,
20
(
4
), pp.
419
431
.
15.
Fu
,
T. S.
, and
Johnson
,
E.
,
2014
, “
Active Control for a Distributed Mass Damper System
,”
ASCE J. Eng. Mech.
,
140
(
2
), pp.
426
429
.
16.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthq. Eng. Struct. Dyn.
,
43
(
8
), pp.
1129
1147
.
17.
Hagedorn
,
P.
, and
Gottfried
,
S.-K.
,
2014
,
Active and Passive Vibration Control of Structures
,
Springer-Verlag
, New York.
18.
Preumont
,
A.
,
Alaluf
,
D.
, and
Bastaits
,
R.
,
2014
, “
Hybrid Mass Damper: A Tutorial Example
,”
Active and Passive Vibration Control of Structures
, Springer-Verlag, New York, pp.
179
211
.
19.
Papalou
,
A.
, and
Strepelias
,
E.
,
2016
, “
Effectiveness of Particle Dampers in Reducing Monuments' Response Under Dynamic Loads
,”
Mech. Adv. Mater. Struct.
,
23
(
2
), pp.
128
135
.
20.
Ruiz
,
R. O.
,
Taflanidis
,
A. A.
, and
Lopez-Garcia
,
D.
,
2016
, “
Characterization and Design of Tuned Liquid Dampers With Floating Roof Considering Arbitrary Tank Cross-Sections
,”
J. Sound Vib.
,
368
, pp.
36
54
.
21.
Miguel
,
L. F. F.
,
Lopez
,
R. H.
,
Torii
,
A. J.
,
Miguel
,
L. F. F.
, and
Beck
,
A. T.
,
2016
, “
Robust Design Optimization of TMDS in Vehicle-Bridge Coupled Vibration Problems
,”
Eng. Struct.
,
126
, pp.
703
711
.
22.
Lu
,
Z.
,
Chen
,
X.
,
Zhang
,
D.
, and
Dai
,
K.
,
2016
, “
Experimental and Analytical Study on the Performance of Particle Tuned Mass Dampers Under Seismic Excitation
,”
Earthq. Eng. Struct. Dyn.
,
46
(
5
), pp.
697
714
.
23.
Walsh
,
K. K.
,
Sallar
,
G.
, and
Steinberg
,
E. P.
,
2017
, “
Modeling and Validation of a Passive Resettable Stiffness Damper
,”
ASCE J. Eng. Mech.
,
143
(
2
), p.
04016114
.
24.
Ghaedi
,
K.
,
Ibrahim
,
Z.
,
Adeli
,
H.
, and
Javanmardi
,
A.
,
2017
, “
Recent Developments in Vibration Control of Building and Bridge Structures
,”
J. Vibroeng.
,
19
(
5
), pp. 3564–3580.
25.
Masri
,
S. F.
,
Caffrey
,
J. P.
, and
Li
,
H.
,
2017
, “
Transient Response of Mdof Systems With Inerters to Nonstationary Stochastic Excitation
,”
ASME J. Appl. Mech.
,
84
, p.
101003
.
26.
Cu
,
V. H.
,
Han
,
B.
, and
Pham
,
D. H.
,
2017
, “
Tuned Mass-High Damping Rubber Damper on a Taut Cable
,”
KSCE J. Civ. Eng.
,
21
(
3
), pp.
928
936
.
27.
Lu
,
Z.
,
Wang
,
Z.
,
Masri
,
S. F.
, and
Lu
,
X.
,
2018
, “
Particle Dampers: Past, Present, and Future
,”
J. Struct. Control Health Monit.
,
25
(1), p.
e2058
.
28.
Moler
,
C.
, and
Van Loan
,
C.
,
1978
, “
Nineteen Dubious Ways to Compute the Exponential of a Matrix
,”
SIAM Rev.
,
20
(
4
), pp.
801
836
.
29.
Dimentberg
,
M. F.
, and
Haenisch
,
H. G.
,
1998
, “
Pseudo-Linear Vibro-Impact System With a Secondary Structure: Response to a White—Noise Excitation
,”
ASME J. Appl. Mech.
,
65
(
3
), pp.
772
774
.
30.
Ibrahim
,
R. A.
,
2009
,
Vibro-Impact Dynamics: Modeling, Mapping and Applications
,
Springer-Verlag
,
Berlin
.
31.
Lenci
,
S.
, and
Rega
,
G.
,
2003
, “
Regular Nonlinear Dynamics and Bifurcations of an Impacting System Under General Periodic Excitation
,”
Nonlinear Dyn.
,
34
(
3/4
), pp.
249
268
.
32.
Shaw
,
S. W.
, and
Pierre
,
C.
,
2006
, “
Synthesis of Mechanical Networks: The Inerter
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
1
), pp.
13
24
.
33.
Den Hartog
,
J. P.
,
1956
,
Mechanical Vibrations
,
4th ed.
,
McGraw-Hill
,
New York
.
34.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned-Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probab. Eng. Mech.
,
38
, pp.
156
164
.
35.
Masri
,
S. F.
, and
Ibrahim
,
A. M.
,
1973
, “
Stochastic Excitation of a Simple System With Impact Damper
,”
Earthq. Eng. Struct. Dyn.
,
1
(
4
), pp.
337
346
.
36.
Crandall
,
S. H.
, and
Mark
,
W. D.
,
1963
,
Random Vibration in Mechanical Systems
,
Academic Press
, Cambridge, MA.
37.
Masri
,
S. F.
, and
Caughey
,
T. K.
,
1966
, “
On the Stability of the Impact Damper
,”
ASME J. Appl. Mech.
,
33
(
3
), pp.
586
592
.
38.
Spanos
,
P. D.
, and
Donley
,
M. G.
,
1992
, “
Non-Linear Multi-Degree-of- Freedom System Random Vibration by Equivalent Statistical Quadratization
,”
Int. J. Non-Linear Mech.
,
27
(
5
), pp.
735
748
.
39.
Spanos
,
P. D.
, and
Donley
,
M. G.
,
2003
, “
Spectral Approach to Equivalent Statistical Quadratization and Cubicization Methods for Nonlinear Oscillators
,”
ASCE J. Eng. Mech.
,
129
(
1
), pp.
31
42
.
40.
Caughey
,
T. K.
,
1963
, “
Equivalent Linearization Techniques
,”
J. Acoust. Soc. Am.
,
35
(
11
), pp.
1706
11
.
41.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1990
,
Random Vibration and Statistical Linearization
,
Wiley
, Hoboken, NJ.
42.
Spanos
,
P. D.
,
Kougioumtzoglou
,
I. A.
, and
Soize
,
C.
,
2011
, “
On the Determination of the Power Spectrum of Randomly Excited Oscillators Via Stochastic Averaging: An Alternative Perspective
,”
Prob. Eng. Mech.
,
26
(
1
), pp.
10
15
.
43.
Liang
,
J.
,
Chaudhur
,
S. R.
, and
Shinozuka
,
M.
,
2007
, “
Simulation of Nonstationary Stochastic Processes by Spectral Representation
,”
ASCE J. Eng. Mech.
,
133
(
6
), pp.
616
627
.
44.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.