The improvement of the accuracy and efficiency of microforming process of polymers is of great significance to meet the miniaturization of polymeric components. When the nonuniform deformation is reduced to the microscopic scale, however, the mechanics of polymers shows a strong reinforcement behavior. Traditional theoretical models of polymers which have not considered material feature lengths are difficult to describe the size effect in micron scale, and the process simulation models based on the traditional theory could not provide effective and precise guidance for polymer microfabrication techniques. The work reported here proposed strategies to simulate size effect behaviors of glassy polymers in microforming process. First, the strain gradient elastoviscoplastic model was derived to describe the size affected behaviors of glassy polymers. Based on the proposed constitutive model, an eight-node finite element with the consideration of nodes' rotation was developed. Then, the proposed finite element method was verified by comparisons between experiments and simulations for both uniaxial compression and microbending. Finally, based on the FE model, under the consideration of the effect of rotation gradient, the strain distribution, the deformation energy, and the processing load were discussed. These strategies are immediately applicable to other wide-ranging classes of microforming process of glassy polymers, thereby foreshadowing their use in process optimizations of microfabrication of polymer components.

Reference

Reference
1.
Greer
,
J. R.
, and
De Hosson
,
J. T. M.
,
2011
, “
Plasticity in Small-Sized Metallic Systems: Intrinsic Versus Extrinsic Size Effect
,”
Prog. Mater. Sci.
,
56
(
6
), pp.
654
724
.
2.
Fu
,
M. W.
,
Wang
,
J. L.
, and
Korsunsky
,
A. M.
,
2016
, “
A Review of Geometrical and Microstructural Size Effects in Micro-Scale Deformation Processing of Metallic Alloy Components
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
94
125
.
3.
Briscoe
,
B. J.
,
Fiori
,
L.
, and
Pelillo
,
E.
,
1998
, “
Nano-Indentation of Polymeric Surfaces
,”
J. Phys. D
,
31
(
19
), pp.
2395
2405
.
4.
Lam
,
D.
,
Yang
,
F.
,
Chong
,
A.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1477
1508
.
5.
McFarland
,
A. W.
, and
Colton
,
J. S.
,
2005
, “
Role of Material Microstructure in Plate Stiffness With Relevance to Microcantilever Sensors
,”
J. Micromech. Microeng.
,
15
(
5
), p.
1060
.
6.
Deng
,
Y.
,
Peng
,
L. F.
,
Lai
,
X.
,
Fu
,
M. W.
, and
Lin
,
Z.
,
2017
, “
Constitutive Modeling of Size Effect on Deformation Behaviors of Amorphous Polymers in Micro-Scaled Deformation
,”
Int. J. Plast.
,
89
, pp.
197
222
.
7.
Wei
,
W.
, and
Lam
,
D. C. C.
,
2010
, “
Size-Dependent Behavior of Macromolecular Solids I: Molecular Origin of the Size Effect
,”
Comput. Model. Eng. Sci.
,
64
(2), pp.
213
226
.
8.
Lam
,
D.
,
Keung
,
L.
, and
Tong
,
P.
,
2010
, “
Size-Dependent Behavior of Macromolecular Solids—II: Higher-Order Viscoelastic Theory and Experiments
,”
Comput. Model. Eng. Sci.
,
66
(1), pp. 73–79.
9.
Liebold
,
C.
, and
Müller
,
W. H.
,
2016
, “
Comparison of Gradient Elasticity Models for the Bending of Micromaterials
,”
Comput. Mater. Sci.
,
116
, pp.
52
61
.
10.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
.
11.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
12.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I: Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.
13.
Chen
,
S. H.
, and
Wang
,
T. C.
,
2002
, “
A New Deformation Theory With Strain Gradient Effects
,”
Int. J. Plast.
,
18
(
8
), pp.
971
995
.
14.
Ahmadi
,
G.
, and
Firoozbakhsh
,
K.
,
1975
, “
First Strain Gradient Theory of Thermoelasticity
,”
Int. J. Solids Struct.
,
11
(
3
), pp.
339
345
.
15.
Zhang
,
J.
, and
Fu
,
Y.
,
2012
, “
Pull-In Analysis of Electrically Actuated Viscoelastic Microbeams Based on a Modified Couple Stress Theory
,”
Meccanica
,
47
(
7
), pp.
1649
1658
.
16.
Nikolov
,
S.
,
Han
,
C. S.
, and
Raabe
,
D.
,
2007
, “
On the Origin of Size Effects in Small-Strain Elasticity of Solid Polymers
,”
Int. J. Solids Struct.
,
44
(
5
), pp.
1582
1592
.
17.
Lam
,
D. C. C.
, and
Chong
,
A.
,
1999
, “
Indentation Model and Strain Gradient Plasticity Law for Glassy Polymers
,”
J. Mater. Res.
,
14
(
9
), pp.
3784
3788
.
18.
Chong
,
A. C. M.
, and
Lam
,
D. C. C.
,
1999
, “
Strain Gradient Plasticity Effect in Indentation Hardness of Polymers
,”
J. Mater. Res.
,
14
(
10
), pp.
4103
4110
.
19.
Voyiadjis
,
G. Z.
,
Shojaei
,
A.
, and
Mozaffari
,
N.
,
2014
, “
Strain Gradient Plasticity for Amorphous and Crystalline Polymers With Application to Micro- and Nano-Scale Deformation Analysis
,”
Polymers
,
55
(
16
), pp.
4182
4198
.
20.
Park
,
S.
, and
Gao
,
X.
,
2006
, “
Bernoulli–Euler Beam Model Based on a Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
(
11
), p.
2355
.
21.
Ghosh
,
S.
,
Kumar
,
A.
,
Sundararaghavan
,
V.
, and
Waas
,
A. M.
,
2013
, “
Non-Local Modeling of Epoxy Using an Atomistically-Informed Kernel
,”
Int. J. Solids Struct.
,
50
(
19
), pp.
2837
2845
.
22.
Garg
,
N.
,
Han
,
C.
, and
Alisafaei
,
F.
,
2016
, “
Length Scale Dependence in Elastomers—Comparison of Indentation Experiments With Numerical Simulations
,”
Polymers
,
98
, pp.
201
209
.
23.
Alisafaei
,
F.
,
Han
,
C.
, and
Garg
,
N.
,
2016
, “
On Couple-Stress Elasto-Plastic Constitutive Frameworks for Glassy Polymers
,”
Int. J. Plast.
,
77
, pp.
30
53
.
24.
Swaddiwudhipong
,
S.
,
Poh
,
L. H.
,
Hua
,
J.
,
Liu
,
Z.
, and
Tho
,
K. K.
,
2005
, “
Modeling Nano-Indentation Tests of Glassy Polymers Using Finite Elements With Strain Gradient Plasticity
,”
Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
,
404
(
1–2
), pp.
179
187
.
25.
Eringen
,
A. C.
,
1966
, “
The Linear Theory of Micropolar Elasticity
,”
J. Math. Mech.
,
15
(6), pp.
909
923
.
26.
Eringen
,
A. C.
,
1967
, “
Linear Theory of Micropolar Viscoelasticity
,”
Int. J. Eng. Sci.
,
5
(
2
), pp.
191
204
.
27.
Haward
,
R. N.
, and
Thackray
,
G.
,
1968
, “
The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
302
(
1471
), pp.
453
472
.
28.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
,
1988
, “
Large Inelastic Deformation of Glassy Polymers—Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
,
7
(
1
), pp.
15
33
.
29.
Anand
,
L.
,
Ames
,
N. M.
,
Srivastava
,
V.
, and
Chester
,
S. A.
,
2009
, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers—Part I: Formulation
,”
Int. J. Plast.
,
25
(
8
), pp.
1474
1494
.
30.
Bouvard
,
J.
,
Francis
,
D. K.
,
Tschopp
,
M. A.
,
Marin
,
E. B.
,
Bammann
,
D. J.
, and
Horstemeyer
,
M. F.
,
2013
, “
An Internal State Variable Material Model for Predicting the Time, Thermomechanical, and Stress State Dependence of Amorphous Glassy Polymers Under Large Deformation
,”
Int. J. Plast.
,
42
, pp.
168
193
.
31.
Ree
,
T.
, and
Eyring
,
H.
,
1955
, “
Theory of Non-Newtonian Flow—I: Solid Plastic System
,”
J. Appl. Phys.
,
26
, pp.
793
800
.
32.
Treloar
,
L. R. G.
,
2005
,
The Physics of Rubber Elasticity
,
3rd ed.
,
Oxford University Press
,
New York
.
33.
Spathis
,
G.
, and
Kontou
,
E.
,
2004
, “
Nonlinear Viscoelastic Model for the Prediction of Double Yielding in a Linear Low-Density Polyethylene Film
,”
J. Appl. Polym. Sci.
,
91
, pp.
3519
3527
.
34.
Ames
,
N. M.
,
Srivastava
,
V.
,
Chester
,
S. A.
, and
Anand, L.
,
2009
, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers—Part II: Applications
,”
Int. J. Plast.
,
25
(
8
), pp.
1495
1539
.
You do not currently have access to this content.