Abstract

We present a weak form implementation of the nonlinear axisymmetric shell equations. This implementation is suitable to study the nonlinear deformations of axisymmetric shells, with the capability of considering a general mid-surface shape, non-homogeneous (axisymmetric) mechanical properties and thickness variations. Moreover, given that the weak balance equations are arrived to naturally, any external load that can be expressed in terms of an energy potential can, therefore, be easily included and modeled. We validate our approach with existing results from the literature, in a variety of settings, including buckling of imperfect spherical shells, indentation of spherical and ellipsoidal shells, and geometry-induced rigidity (GIR) of pressurized ellipsoidal shells. Whereas the fundamental basis of our approach is classic and well established, from a methodological view point, we hope that this brief note will be of both technical and pedagogical value to the growing and dynamic community that is revisiting these canonical but still challenging class of problems in shell mechanics.

References

References
1.
Koiter
,
W. T.
,
1969
, “
The Nonlinear Buckling Behavior of a Complete Spherical Shell Under Uniform External Pressure, Parts I, II, III & IV
,”
Proc. Kon. Ned. Ak. Wet.
,
B72
, pp.
40
123
.
2.
Zoelly
,
R.
,
1915
, “
Ueber ein knickungsproblem an der kugelschale
,” Ph.D. thesis,
ETH Zürich
,
Zürich, Switzerland
.
3.
Hutchinson
,
J. W.
,
1967
, “
Imperfection Sensitivity of Externally Pressurized Spherical Shells
,”
J. Appl. Mech.
,
34
(
1
), pp.
49
55
. 10.1115/1.3607667
4.
Donnell
,
L.
,
1977
,
Beams, Plates and Shells
,
McGraw Hill
,
New York
.
5.
Sanders
,
J. L.
,
1963
, “
Nonlinear Theories for Thin Shells
,”
Q. Appl. Math.
,
21
(
1
), pp.
21
36
. 10.1090/qam/147023
6.
Budiansky
,
B.
,
1968
, “
Notes on Nonlinear Shell Theory
,”
J. Appl. Mech.
,
41
(
35
), pp.
393
401
. 10.1115/1.3601208
7.
Niordson
,
F.
,
1985
,
Shell Theory
,
Elsevier Science
,
Amsterdam
.
8.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2017
, “
Nonlinear Buckling Interaction for Spherical Shells Subject to Pressure and Probing Forces
,”
J. Appl. Mech.
,
84
(
6
), p.
061001
. 10.1115/1.4036355
9.
Hutchinson
,
J. W.
, and
Thompson
,
J. M. T.
,
2018
, “
Imperfections and Energy Barriers in Shell Buckling
,”
Int. J. Solids Struct.
,
148–149
, pp.
157
168
. 10.1016/j.ijsolstr.2018.01.030
10.
Lee
,
A.
,
Brun
,
P.-T.
,
Marthelot
,
J.
,
Balestra
,
G.
,
Gallaire
,
F.
, and
Reis
,
P. M.
,
2016
, “
Fabrication of Slender Elastic Shells by the Coating of Curved Surfaces
,”
Nat. Commun.
,
7
, p.
11155
. 10.1038/ncomms11155
11.
Lee
,
A.
,
López Jiménez
,
F.
,
Marthelot
,
J.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2016
, “
The Geometric Role of Precisely Engineered Imperfections on the Critical Buckling Load of Spherical Elastic Shells
,”
J. Appl. Mech.
,
83
(
11
), p.
111005
. 10.1115/1.4034431
12.
Marthelot
,
J.
,
López Jiménez
,
F.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Buckling of a Pressurized Hemispherical Shell Subjected to a Probing Force
,”
J. Appl. Mech.
,
84
(
12
), p.
121005
. 10.1115/1.4038063
13.
Hutchinson
,
J. W.
,
2016
, “
Buckling of Spherical Shells Revisited
,”
P. Roy. Soc. A-Math. Phy.
,
472
(
2195
), p.
20160577
. 10.1098/rspa.2016.0577
14.
Vella
,
D.
,
Ajdari
,
A.
,
Vaziri
,
A.
, and
Boudaoud
,
A.
,
2012
, “
Indentation of Ellipsoidal and Cylindrical Elastic Shells
,”
Phys. Rev. Lett.
,
109
(
14
), p.
144302
. 10.1103/PhysRevLett.109.144302
15.
Lazarus
,
A.
,
Florijn
,
H. C. B.
, and
Reis
,
P. M.
,
2012
, “
Geometry-Induced Rigidity in Nonspherical Pressurized Elastic Shells
,”
Phys. Rev. Lett.
,
109
(
14
), p.
144301
. 10.1103/PhysRevLett.109.144301
16.
López Jiménez
,
F.
,
Marthelot
,
J.
,
Lee
,
A.
,
Hutchinson
,
J. W.
, and
Reis
,
P. M.
,
2017
, “
Technical Brief: Knockdown Factor for the Buckling of Spherical Shells Containing Large-Amplitude Geometric Defects
,”
J. Appl. Mech.
,
84
(
3
), p.
034501
. 10.1115/1.4035665
17.
Pezzulla
,
M.
,
Stoop
,
N.
,
Steranka
,
M. P.
,
Bade
,
A. J.
, and
Holmes
,
D. P.
,
2018
, “
Curvature-Induced Instabilities of Shells
,”
Phys. Rev. Lett.
,
120
(
4
), p.
048002
. 10.1103/PhysRevLett.120.048002
You do not currently have access to this content.