Abstract

An elastic inhomogeneity is termed neutral if its introduction does not disturb the original stress field in the initially uncut elastic body. Neutrality in this sense is often achieved by appropriate design criteria such as a careful choice of the shape of the inhomogeneity and the properties of the interfacial layer between the inhomogeneity and its surrounding matrix. Unfortunately, mismatched stress and strain fields in the resulting composite structure make it difficult to simultaneously control both the shape of the inhomogeneity and its interfacial properties to achieve the desired neutrality property. We assert that the associated temperature field can be used to adjust the stress and strain fields within the inhomogeneity via thermal expansion, thus allowing us to control the properties of the interfacial layer for a given shape of inhomogeneity. Our theoretical results show that the design of a neutral circular or annular elastic inhomogeneity requires an accompanying internal uniform temperature field when the elastic body is in equi-biaxial tension and an internal temperature field which is quadratic if the body is subjected to uniaxial tension or shear force. More importantly, in contrast to the well-established result in the literature for a purely elastic inhomogeneity, under certain conditions, a neutral elastic inhomogeneity can be designed via thermal expansion despite the assumption of a perfectly bonded interface between the inhomogeneity and the surrounding matrix.

References

References
1.
Prolongo
,
S. G.
,
Moriche
,
R.
,
Jiménez-Suárez
,
A.
,
Sánchez
,
M.
, and
Ureña
,
A.
,
2014
, “
Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins
,”
Eur. Polym. J.
,
61
, pp.
206
214
. 10.1016/j.eurpolymj.2014.09.022
2.
Luyckx
,
G.
,
Voet
,
E.
,
Lammens
,
N.
, and
Degrieck
,
J.
,
2011
, “
Strain Measurements of Composite Laminates With Embedded Fibre Bragg Gratings: Criticism and Opportunities for Research
,”
Sensors
,
11
(
1
), pp.
384
408
. 10.3390/s110100384
3.
Yong
,
G.
,
Wei-Hua
,
W.
, and
Ji-Ping
,
H.
,
2014
, “
Transformation Electrics: Cloaking and Rotating Electric Current
,”
Commun. Theor. Phys.
,
61
(
4
), p.
517
. 10.1088/0253-6102/61/4/18
4.
Parnell
,
W. J.
,
2011
, “
Nonlinear Pre-Stress for Cloaking From Antiplane Elastic Waves
,”
Proc. R. Soc. A
,
468
(
2138
), pp.
563
580
. 10.1098/rspa.2011.0477
5.
Yang
,
T.
,
Huang
,
L.
,
Chen
,
F.
, and
Xu
,
W.
,
2013
, “
Heat Flux and Temperature Field Cloaks for Arbitrarily Shaped Objects
,”
J. Phys. D: Appl. Phys.
,
46
(
30
), p.
305102
. 10.1088/0022-3727/46/30/305102
6.
Sklan
,
S. R.
,
Pak
,
R. Y.
, and
Li
,
B.
,
2018
, “
Seismic Invisibility: Elastic Wave Cloaking via Symmetrized Transformation Media
,”
New J. Phys.
,
20
(
6
), p.
063013
. 10.1088/1367-2630/aac7ab
7.
Mansfield
,
E. H.
,
1953
, “
Neutral Iioles in Plane Sheet—Reinforced Iioles Which Are Elastically Equivalent to the Uncut Sheet
,”
Q. J. Mech. Appl. Math.
,
6
(
3
), pp.
370
378
. 10.1093/qjmam/6.3.370
8.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
143
150
. 10.1115/1.3636446
9.
Wang
,
X.
, and
Schiavone
,
P.
,
2013
, “
A Neutral Multi-Coated Sphere Under Non-Uniform Electric Field in Conductivity
,”
Z. Angew. Math. Phys.
,
64
(
3
), pp.
895
903
. 10.1007/s00033-012-0260-6
10.
He
,
X.
, and
Wu
,
L.
,
2013
, “
Thermal Transparency With the Concept of Neutral Inclusion
,”
Phys. Rev. E
,
88
(
3
), p.
033201
. 10.1103/PhysRevE.88.033201
11.
Dai
,
M.
,
Schiavone
,
P.
, and
Gao
,
C. F.
,
2016
, “
Uniqueness of Neutral Elastic Circular Nano-Inhomogeneities in Antiplane Shear and Plane Deformations
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101001
. 10.1115/1.4034118
12.
Ru
,
C. Q.
,
1998
, “
Interface Design of Neutral Elastic Inclusions
,”
Int. J. Solids Struct.
,
35
(
7–8
), pp.
559
572
. 10.1016/S0020-7683(97)00072-3
13.
Dugdale
,
J. S.
, and
MacDonald
,
D. K. C.
,
1953
, “
The Thermal Expansion of Solids
,”
Phys. Rev.
,
89
(
4
), pp.
832
834
. 10.1103/PhysRev.89.832
14.
Zimmerman
,
R. W.
, and
Lutz
,
M. P.
,
1999
, “
Thermal Stresses and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder
,”
J. Therm. Stresses
,
22
(
2
), pp.
177
188
. 10.1080/014957399280959
15.
Wang
,
B.
,
1992
, “
Three-Dimensional Analysis of an Ellipsoidal Inclusion in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
29
(
3
), pp.
293
308
. 10.1016/0020-7683(92)90201-4
16.
Gao
,
C. F.
, and
Mai
,
Y. W.
,
2011
, “
Singularities of an Interface Crack in Electrostrictive Materials
,”
Int. J. Solids Struct.
,
48
(
9
), pp.
1395
1401
. 10.1016/j.ijsolstr.2011.01.026
17.
Muskhelishvili
,
N. I.
,
1975
,
Some Basic Problems of Mathematical Theory of Elasticity
,
Noordhoff
,
Leyden
.
18.
Song
,
H.
,
Song
,
K.
, and
Gao
,
C.
,
2019
, “
Temperature and Thermal Stress Around an Elliptic Functional Defect in a Thermoelectric Material
,”
Mech. Mater.
,
130
, pp.
58
64
. 10.1016/j.mechmat.2019.01.008
19.
Achenbach
,
J. D.
, and
Zhu
,
H.
,
1989
, “
Effect of Interfacial Zone on Mechanical Behavior and Failure of Fiber-Reinforced Composites
,”
J. Mech. Phys. Solids
,
37
(
3
), pp.
381
393
. 10.1016/0022-5096(89)90005-7
20.
Hashin
,
Z.
,
1991
, “
The Spherical Inclusion With Imperfect Interface. ASME, Transactions
,”
ASME J. Appl. Mech.
,
58
(
2
), pp.
444
449
. 10.1115/1.2897205
21.
Fabis
,
P. M.
,
1999
, “
Material Property, Compatibility, and Reliability Issues in Diamond-Enhanced, Gas-Based Plastic Packages
,”
Microelectron. Reliab.
,
39
(
8
), pp.
1275
1291
. 10.1016/S0026-2714(99)00040-2
You do not currently have access to this content.