Abstract

For many models of solids, we frequently assume that the material parameters do not vary in space nor that they vary from one product realization to another. If the length scale of the application approaches the length scale of the microstructure however, spatially fluctuating parameter fields (which vary from one realization of the field to another) can be incorporated to make the model capture the stochasticity of the underlying micro-structure. Randomly fluctuating parameter fields are often described as Gaussian fields. Gaussian fields, however, assume that the probability density function of a material parameter at a given location is a univariate Gaussian distribution. This entails for instance that negative parameter values can be realized, whereas most material parameters have physical bounds (e.g., Young’s modulus cannot be negative). In this contribution, randomly fluctuating parameter fields are therefore described using the copula theorem and Gaussian fields, which allow different types of univariate marginal distributions to be incorporated but with the same correlation structure as Gaussian fields. It is convenient to keep the Gaussian correlation structure, as it allows us to draw samples from Gaussian fields and transform them into the new random fields. The benefit of this approach is that any type of univariate marginal distribution can be incorporated. If the selected univariate marginal distribution has bounds, unphysical material parameter values will never be realized. We then use Bayesian inference to identify the distribution parameters (which govern the random field). Bayesian inference regards the parameters that are to be identified as random variables and requires a user-defined prior distribution of the parameters to which the observations are inferred. For homogenized Young’s modulus of a columnar polycrystalline material of interest in this study, the results show that with a relatively wide prior (i.e., a prior distribution without strong assumptions), a single specimen is sufficient to accurately recover the distribution parameter values.

References

References
1.
Lucas
,
V.
,
Golinval
,
J. C.
,
Paquay
,
S.
,
Nguyen
,
V. D.
,
Noels
,
L.
, and
Wu
,
L.
,
2015
, “
A Stochastic Computational Multiscale Approach: Application to MEMS Resonators
,”
Comput. Methods Appl. Mech. Eng.
,
294
, pp.
141
167
. 10.1016/j.cma.2015.05.019
2.
Shinozuka
,
M.
, and
Jan
,
C. M.
,
1972
, “
Digital Simulation of Random Processes and Its Applications
,”
J. Sound Vib.
,
25
(
1
), pp.
111
128
. 10.1016/0022-460X(72)90600-1
3.
Wu
,
L.
,
Lucas
,
V.
,
Nguyen
,
V. D.
,
Golinval
,
J. C.
,
Paquay
,
S.
, and
Noels
,
L.
,
2016
, “
A Stochastic Multi-Scale Approach for the Modeling of Thermo-Elastic Damping in Micro-Resonators
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
802
839
. 10.1016/j.cma.2016.07.042
4.
Nelsen
,
R. B.
,
2007
,
An Introduction to Copulas
,
Springer Science & Business Media
,
New York
.
5.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Processes for Machine Learning
, Vol.
1
,
MIT Press
,
Cambridge
.
6.
MacKay
,
D. J. C.
,
2003
,
Information Theory, Inference and Learning Algorithms
,
Cambridge University Press
,
Cambridge.
7.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
2003
,
Bayesian Data Analysis
(
Chapman & Hall/CRC Texts in Statistical Science
),
Chapman & Hall/CRC
,
London.
8.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
(
Information Science and Statistics
),
Springer Science & Business Media
,
New York
.
9.
Rogers
,
S.
, and
Girolami
,
M.
,
2016
,
A First Course in Machine Learning
,
2nd ed.
,
Chapman & Hall/CRC
,
London.
10.
Murphy
,
K. P.
, and
Bach
,
F.
,
2012
,
Machine Learning: A Probabilistic Perspective
(
Adaptive Computation and Machine Learning Series
),
MIT Press
,
Cambridge
.
11.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
. 10.1111/1467-9868.00294
12.
Bayarri
,
M. J.
,
Berger
,
J. O.
,
Paulo
,
R.
,
Sacks
,
J.
,
Cafeo
,
J. A.
,
Cavendish
,
J.
,
Lin
,
C. H.
, and
Tu
,
J.
,
2007
, “
A Framework for Validation of Computer Models
,”
Technometrics
,
49
(
2
), pp.
138
154
. 10.1198/004017007000000092
13.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
. 10.1115/1.4007390
14.
Rappel
,
H.
,
Beex
,
L. A. A.
,
Noels
,
L.
, and
Bordas
,
S. P. A.
,
2018
, “
Identifying Elastoplastic Parameters With Bayes’ Theorem Considering Output Error, Input Error and Model Uncertainty
,”
Probab. Eng. Mech.
,
55
, pp.
28
41
. 10.1016/j.probengmech.2018.08.004
15.
Song
,
P. X.
,
2000
, “
Multivariate Dispersion Models Generated From Gaussian Copula
,”
Scand. J. Stat.
,
27
(
2
), pp.
305
320
. 10.1111/1467-9469.00191
16.
Jaimungal
,
S.
, and
Ng
,
E. K. H.
,
2009
, “Kernel Based Copula Processes,”
Machine Learning and Knowledge Discovery in Databases
,
W.
Buntine
,
M.
Grobelnik
,
D.
Mladenić
,
J.
Shawe-Taylor
, eds.,
Springer Science & Business Media
,
Berlin
, pp.
628
643
.
17.
Wilson
,
A. G.
, and
Ghahramani
,
Z.
,
2010
, “
Copula Processes
,”
Advances in Neural Information Processing Systems
, Vancouver, CA,
Dec.
6–11
, pp.
2460
2468
.
18.
Isenberg
,
J.
,
1979
, “
Progressing From Least Squares to Bayesian Estimation
,”
Proceedings of the 1979 ASME Design Engineering Technical Conference
,
New York
, pp.
1
11
.
19.
Alvin
,
K. F.
,
1997
, “
Finite Element Model Update Via Bayesian Estimation and Minimization of Dynamic Residuals
,”
AIAA J.
,
35
(
5
), pp.
879
886
. 10.2514/2.7462
20.
Beck
,
J. L.
, and
Katafygiotis
,
L. S.
,
1998
, “
Updating Models and Their Uncertainties. I: Bayesian Statistical Framework
,”
J. Eng. Mech.
,
124
(
4
), pp.
455
461
. 10.1061/(ASCE)0733-9399(1998)124:4(455)
21.
Marwala
,
T.
, and
Sibisi
,
S.
,
2005
, “
Finite Element Model Updating Using Bayesian Framework and Modal Properties
,”
J. Aircr.
,
42
(
1
), pp.
275
278
. 10.2514/1.11841
22.
Gogu
,
C.
,
Haftka
,
R.
,
Le Riche
,
R.
,
Molimard
,
J.
, and
Vautrin
,
A.
,
2010
, “
Introduction to the Bayesian Approach Applied to Elastic Constants Identification
,”
AIAA J.
,
48
(
5
), pp.
893
903
. 10.2514/1.40922
23.
Lai
,
T. C.
, and
Ip
,
K. H.
,
1996
, “
Parameter Estimation of Orthotropic Plates by Bayesian Sensitivity Analysis
,”
Compos. Struct.
,
34
(
1
), pp.
29
42
. 10.1016/0263-8223(95)00128-X
24.
Daghia
,
F.
,
de Miranda
,
S.
,
Ubertini
,
F.
, and
Viola
,
E.
,
2007
, “
Estimation of Elastic Constants of Thick Laminated Plates Within a Bayesian Framework
,”
Compos. Struct.
,
80
(
3
), pp.
461
473
. 10.1016/j.compstruct.2006.06.030
25.
Nichols
,
J. M.
,
Link
,
W. A.
,
Murphy
,
K. D.
, and
Olson
,
C. C.
,
2010
, “
A Bayesian Approach to Identifying Structural Nonlinearity Using Free-decay Response: Application to Damage Detection in Composites
,”
J. Sound Vib.
,
329
(
15
), pp.
2995
3007
. 10.1016/j.jsv.2010.02.004
26.
Gogu
,
C.
,
Yin
,
W.
,
Haftka
,
R.
,
Ifju
,
P.
,
Molimard
,
J.
,
Le Riche
,
R.
, and
Vautrin
,
A.
,
2013
, “
Bayesian Identification of Elastic Constants in Multi-Directional Laminate From Moiré Interferometry Displacement Fields
,”
Exp. Mech.
,
53
(
4
), pp.
635
648
. 10.1007/s11340-012-9671-8
27.
Most
,
T.
,
2010
, “Identification of the Parameters of Complex Constitutive Models: Least Squares Minimization vs. Bayesian Updating,”
Reliability and Optimization of Structural Systems
,
D.
Straub
, ed.,
CRC Press
,
Boca Raton
, pp.
119
130
.
28.
Rappel
,
H.
,
Beex
,
L. A. A.
,
Hale
,
J. S.
,
Noels
,
L.
, and
Bordas
,
S. P. A.
,
2019
, “
A Tutorial on Bayesian Inference to Identify Material Parameters in Solid Mechanics
,”
Arch. Comput. Methods Eng.
, pp.
1
25
. 10.1007/s11831-018-09311-x
29.
Muto
,
M.
, and
Beck
,
J. L.
,
2008
, “
Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation
,”
J. Vib. Control
,
14
(
1–2
), pp.
7
34
. 10.1177/1077546307079400
30.
Liu
,
P.
, and
Au
,
S. K.
,
2013
, “
Bayesian Parameter Identification of Hysteretic Behavior of Composite Walls
,”
Probab. Eng. Mech.
,
34
, pp.
101
109
. 10.1016/j.probengmech.2013.08.005
31.
Fitzenz
,
D. D.
,
Jalobeanu
,
A.
, and
Hickman
,
S. H.
,
2007
, “
Integrating Laboratory Creep Compaction Data With Numerical Fault Models: A Bayesian Framework
,”
J. Geophys. Res.: Solid Earth
,
112
(
B8
), p.
B08410
. 10.1029/2006JB004792
32.
Hernandez
,
W. P.
,
Borges
,
F. C. L.
,
Castello
,
D. A.
,
Roitman
,
N.
, and
Magluta
,
C.
,
2015
, “Bayesian Inference Applied on Model Calibration of Fractional Derivative Viscoelastic Model,”
DINAME 2015—Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics
,
V.
Steffen
, Jr.
,
D. A.
Rade
,
W. M.
Bessa
, eds., Natal.
33.
Rappel
,
H.
,
Beex
,
L. A. A.
, and
Bordas
,
S. P. A.
,
2018
, “
Bayesian Inference to Identify Parameters in Viscoelasticity
,”
Mech. Time Dependent Mater.
,
22
(
2
), pp.
221
258
. 10.1007/s11043-017-9361-0
34.
Rappel
,
H.
, and
Beex
,
L. A. A.
,
2019
, “
Estimating Fibres’ Material Parameter Distributions From Limited Data With the Help of Bayesian Inference
,”
Eur. J. Mech. A/Solids
,
75
, pp.
169
196
. 10.1016/j.euromechsol.2019.01.001
35.
Mohamedou
,
M.
,
Zulueta
,
K.
,
Chung
,
C. N.
,
Rappel
,
H.
,
Beex
,
L. A. A.
,
Adam
,
L.
,
Arriaga
,
A.
,
Major
,
Z.
,
Wu
,
L.
, and
Noels
,
L.
,
2019
, “
Bayesian Identification of Mean-Field Homogenization Model Parameters and Uncertain Matrix Behavior in Non-Aligned Short Fiber Composites
,”
Compos. Struct.
,
220
, pp.
64
80
. 10.1016/j.compstruct.2019.03.066
36.
Koutsourelakis
,
P. S.
,
2009
, “
A Multi-Resolution, Non-Parametric, Bayesian Framework for Identification of Spatially-Varying Model Parameters
,”
J. Comput. Phys.
,
228
(
17
), pp.
6184
6211
. 10.1016/j.jcp.2009.05.016
37.
Koutsourelakis
,
P. S.
,
2012
, “
A Novel Bayesian Strategy for the Identification of Spatially Varying Material Properties and Model Validation: An Application to Static Elastography
,”
Int. J. Numer. Methods Eng.
,
91
(
3
), pp.
249
268
. 10.1002/nme.4261
38.
Uribe
,
F.
,
Papaiannou
,
I.
,
Betz
,
W.
,
Latz
,
J.
, and
Straub
,
D.
,
2017
, “
Bayesian Model Inference of Random Fields Represented With the Karhunen-Loève Expansion
,”
UNCECOMP 2017 2nd ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering
,
Rhodes, Greece
,
June 15–17
.
39.
Vigliotti
,
A.
,
Csányi
,
G.
, and
Deshpande
,
V. S.
,
2018
, “
Bayesian Inference of the Spatial Distributions of Material Properties
,”
J. Mech. Phys. Solids
,
118
, pp.
74
97
. 10.1016/j.jmps.2018.05.007
40.
Brooks
,
S.
,
Gelman
,
A.
,
Jones
,
G.
, and
Meng
,
L. X.
,
2011
,
Handbook of Markov Chain Monte Carlo
,
CRC Press
,
Boca Raton
.
41.
Beck
,
J. L.
,
2010
, “
Bayesian System Identification Based on Probability Logic
,”
Struct. Control Health Monit.
,
17
(
7
), pp.
825
847
. 10.1002/stc.424
42.
Rasmussen
,
C. E.
,
2004
,
Gaussian Processes in Machine Learning
,
Springer Science Business Media
,
Berlin
, pp.
63
71
.
43.
Sklar
,
M.
,
1959
,
Fonctions de répartition à n dimensions et leurs marges
, Vol.
8
,
Université Paris
,
Paris
.
44.
Silva
,
R. d. S.
, and
Lopes
,
H. F.
,
2008
, “
Copula, Marginal Distributions and Model Selection: A Bayesian Note
,”
Stat. Comput.
,
18
(
3
), pp.
313
320
. 10.1007/s11222-008-9058-y
45.
Noh
,
Y.
,
Choi
,
K. K.
, and
Lee
,
I.
,
2009
, “
Identification of Marginal and Joint CDFs Using Bayesian Method for RBDO
,”
Struct. Multidiscipl. Optim.
,
40
(
1
), p.
35
. 10.1007/s00158-009-0385-1
46.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
1999
, “
Adaptive Proposal Distribution for Random Walk Metropolis Algorithm
,”
Comput. Stat.
,
14
(
3
), pp.
375
396
. 10.1007/s001800050022
You do not currently have access to this content.