Abstract

Maintaining preload in bolted joints is critical for the safe and efficient operation of nearly all built-up structures. Dynamic loss of preload during operation occurs when sufficient shear force is applied to the joint such that slip is induced in at least the threads if not the entire bolt. Such shear forces are often realized when the joint is subjected to sustained vibrations, resulting in loosening over relatively long periods of time, or extreme shock loading where loosening occurs over fractions of a second. Modeling of joint loosening often focuses on complex analytical approaches or high-fidelity simulations using finite element models. While such approaches may succeed for a single bolt, they are unfeasible for use in simulations of entire built-up structures, which may possess dozens to thousands of joints. Thus, there is a need for reduced-order models (ROMs) that capture the dominant governing physics, but at drastically lower computational costs. This research introduces a phenomenological ROM for loosening in bolted joints subjected to axial shock excitation. The model introduces a mathematical relationship between the stiffness of the joint and torque of the fastener and treats the torque as a dynamic internal variable governed by a first-order, ordinary differential equation. The proposed ROM is presented then applied to an experimental study of a split-Hopkinson pressure bar with a threaded joint subjected to extreme shock loading. The results demonstrate that the proposed ROM is able to reproduce the dominant effects of loosening in bolted joints subjected to axial shock excitation.

References

References
1.
Riveros
,
G. A.
,
Mahmoud
,
H.
, and
Rodriguez Lopez
,
S.
,
2016
, “
Causes of Pretension Loss in High-Strength Bolts
.” Report No. ERDC/ITL TR-16-2. https://usace.contentdm.oclc.org/digital/collection/p266001coll1/id/3842/
2.
Nassar
,
S. A.
, and
Alkelani
,
A. A.
,
2005
, “
Clamp Load Loss Due to Elastic Interaction and Gasket Creep Relaxation in Bolted Joints
,”
ASME J. Press. Vessel Technol.
,
128
(
3
), pp.
394
401
. 10.1115/1.2218343
3.
Nechache
,
A.
, and
Bouzid
,
A.-H.
,
2007
, “
Creep Analysis of Bolted Flange Joints
,”
Int. J. Press. Vessels Pip.
,
84
(
3
), pp.
185
194
. 10.1016/j.ijpvp.2006.06.004
4.
Alkelani
,
A. A.
,
Housari
,
B. A.
, and
Nassar
,
S. A.
,
2008
, “
A Proposed Model for Creep Relaxation of Soft Gaskets in Bolted Joints at Room Temperature
,”
ASME J. Pressure Vessel Technol.
,
130
(
1
), p.
011211
. 10.1115/1.2826430
5.
Yang
,
J.
, and
John
,
D. T.
,
1999
, “
Mathematical Model for Relaxation in High-Strength Bolted Connections
,”
J. Struct. Eng.
,
125
(
8
), pp.
803
809
. 10.1061/(ASCE)0733-9445(1999)125:8(803)
6.
Nah
,
H.-S.
,
Lee
,
H.-J.
,
Ryoo
,
J.-Y.
, and
Choi
,
S.-M.
,
2012
, “
Estimation of Long Term Clamping Force of High Strength Bolts By Coating Thickness Parameters of Slip Faying Surfaces
,”
J. Korean Soc. Adv. Compos. Struct.
,
3
(
1
), pp.
8
15
. 10.11004/kosacs.2012.3.1.008
7.
Nah
,
H.-S.
,
Lee
,
H.-J.
, and
Choi
,
S.-M.
,
2014
, “
Evaluating Long-Term Relaxation of High Strength Bolts Considering Coating on Slip Faying Surface
,”
Steel Compos. Struct.
,
16
(
6
), pp.
703
718
. 10.12989/scs.2014.16.6.703
8.
Tendo
,
M.
,
Yamada
,
K.
, and
Shimura
,
Y.
,
2000
, “
Stress Relaxation Behavior at High-Tension Bolted Connections of Stainless-Steel Plates
,”
ASME J. Eng. Mater. Technol.
,
123
(
2
), pp.
198
202
. 10.1115/1.1338481
9.
Sears
,
G.
, and
King
,
D.
,
2004
, “
Joint Integrity Management of Critical Flanges
,”
Int. J. Pressure Vessels Pip.
,
81
(
6
), pp.
513
519
. 10.1016/j.ijpvp.2003.12.021
10.
Zhang
,
M.
,
Lu
,
L.
,
Wang
,
W.
, and
Zeng
,
D.
,
2018
, “
The Roles of Thread Wear on Self-Loosening Behavior of Bolted Joints Under Transverse Cyclic Loading
,”
Wear
,
394–395
, pp.
30
39
. 10.1016/j.wear.2017.10.006
11.
Ibrahim
,
R. A.
, and
Pettit
,
C. L.
,
2005
, “
Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners
,”
J. Sound Vib.
,
279
(
3
), pp.
857
936
. 10.1016/j.jsv.2003.11.064
12.
Foley
,
J. R.
,
Dodson
,
J. C.
,
McKinnon
,
C. M.
,
Luk
,
V. K.
, and
Falbo
,
G. L.
,
2010
, “
Split Hopkinson Rod Experiments of Preloaded Interfaces
,”
Proceedings of the IMPLAST 2010 Conference
,
Providence, RI
,
Oct. 12–14
.
13.
Dodson
,
J. C.
,
Wolfson
,
J.
,
Foley
,
J. R.
, and
Inman
,
D. J.
,
2012
, “Transmission of Guided Waves Across Prestressed Interfaces,”
Topics in Nonlinear Dynamics, Volume 3
,
D
Adams
,
G
Kerschen
, and
A
Carrella
,
eds.
,
Springer
,
New York
, pp.
83
94
.
14.
Dodson
,
J. C.
,
Lowe
,
R. D.
,
Foley
,
J. R.
,
Mougeotte
,
C.
,
Geissler
,
D.
, and
Cordes
,
J.
,
2014
, “Dynamics of Interfaces with Static Initial Loading,”
Dynamic Behavior of Materials
, Volume
1
,
B.
Song
,
D.
Casem
, and
J.
Kimberley
,
eds.
,
Springer International Publishing
,
New York
, pp.
37
50
.
15.
Junker
,
G. H.
,
1969
, “
New Criteria for Self-Loosening of Fasteners Under Vibration
,”
SAE Trans.
,
78
, pp.
314
335
. 10.4271/690055
16.
Junker
,
G. H.
,
1972
, “
Criteria for Self Loosening of Fasteners Under Vibration
,”
Aircr. Eng. Aerosp. Technol.
,
44
(
10
), pp.
14
16
. 10.1108/eb034949
17.
Pai
,
N. G.
, and
Hess
,
D. P.
,
2002
, “
Experimental Study of Loosening of Threaded Fasteners Due to Dynamic Shear Loads
,”
J. Sound Vib.
,
253
(
3
), pp.
585
602
. 10.1006/jsvi.2001.4006
18.
Dinger
,
G.
, and
Friedrich
,
C.
,
2011
, “
Avoiding Self-Loosening Failure of Bolted Joints with Numerical Assessment of Local Contact State
,”
Eng. Fail. Anal.
,
18
(
8
), pp.
2188
2200
. 10.1016/j.engfailanal.2011.07.012
19.
Yokoyama
,
T.
,
Olsson
,
M.
,
Izumi
,
S.
, and
Sakai
,
S.
,
2012
, “
Investigation Into the Self-Loosening Behavior of Bolted Joint Subjected to Rotational Loading
,”
Eng. Fail. Anal.
,
23
, pp.
35
43
. 10.1016/j.engfailanal.2012.01.010
20.
Hess
,
D. P.
, and
Davis
,
K.
,
1996
, “
Threaded Components Under Axial Harmonic Vibration, Part 1: Experiments
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
417
422
. 10.1115/1.2888199
21.
Hess
,
D. P.
,
1996
, “
Threaded Components Under Axial Harmonic Vibration, Part 2: Kinematic Analysis
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
423
429
. 10.1115/1.2888200
22.
Hess
,
D. P.
, and
Sudhirkashyap
,
S. V.
,
1997
, “
Dynamic Loosening and Tightening of a Single-Bolt Assembly
,”
ASME J. Vib. Acoust.
,
119
(
3
), pp.
311
316
. 10.1115/1.2889725
23.
Basava
,
S.
, and
Hess
,
D. P.
,
1998
, “
Bolted Joint Clamping Force Variation Due to Axial Vibration
,”
J. Sound Vib.
,
210
(
2
), pp.
255
265
. 10.1006/jsvi.1997.1330
24.
Nassar
,
S. A.
, and
Housari
,
B. A.
,
2005
, “
Effect of Thread Pitch and Initial Tension on the Self-Loosening of Threaded Fasteners
,”
ASME J. Pressure Vessel Technol.
,
128
(
4
), pp.
590
598
. 10.1115/1.2349572
25.
Nassar
,
S. A.
, and
Housari
,
B. A.
,
2006
, “
Study of the Effect of Hole Clearance and Thread Fit on the Self-Loosening of Threaded Fasteners
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
586
594
. 10.1115/1.2717227
26.
Housari
,
B. A.
, and
Nassar
,
S. A.
,
2007
, “
Effect of Thread and Bearing Friction Coefficients on the Vibration-Induced Loosening of Threaded Fasteners
,”
ASME J. Vib. Acoust.
,
129
(
4
), pp.
484
494
. 10.1115/1.2748473
27.
Nassar
,
S. A.
, and
Yang
,
X.
,
2009
, “
A Mathematical Model for Vibration-Induced Loosening of Preloaded Threaded Fasteners
,”
ASME J. Vib. Acoust.
,
131
(
2
), p.
021009
. 10.1115/1.2981165
28.
Shoji
,
Y.
, and
Sawa
,
T.
,
2005
,
Analytical Research on Mechanism of Bolt Loosening Due to Lateral Loads
,
American Society of Mechanical Engineers
,
New York
, pp.
59
65
. 10.1115/pvp2005-71333
29.
Liu
,
J.
,
Ouyang
,
H.
,
Feng
,
Z.
,
Cai
,
Z.
,
Liu
,
X.
, and
Zhu
,
M.
,
2017
, “
Study on Self-Loosening of Bolted Joints Excited by Dynamic Axial Load
,”
Tribol. Int.
,
115
, pp.
432
451
. 10.1016/j.triboint.2017.05.037
30.
Hopkinson
,
B.
,
1914
, “
A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets
,”
Philos. Trans. R. Soc. Lond. Ser. -Contain. Pap. Math. Phys. Character
,
213
, pp.
437
456
. 10.1098/rsta.1914.0010
31.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. Sect. B
,
62
(
11
), pp.
676
700
. 10.1088/0370-1301/62/11/302
32.
Gray
,
G. T.
,
2000
, “Classical Split Hopkinson Pressure Rod Technique,”
Mechanical Testing and Evaluation
,
H
Kuhn
, and
D
Medlin
,
eds.
,
ASM International
,
Materials Park, OH
.
33.
Chen
,
W. W.
, and
Song
,
B.
,
2011
,
Split Hopkinson (Kolsky) Bar : Design, Testing and Applications
,
Springer
,
New York
.
34.
Moore
,
K. J.
,
Kurt
,
M.
,
Eriten
,
M.
,
Dodson
,
J. C.
,
Foley
,
J. R.
,
Wolfson
,
J. C.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Nonlinear Parameter Identification of a Mechanical Interface Based on Primary Wave Scattering
,”
Exp. Mech.
,
57
(
9
), pp.
1495
1508
. 10.1007/s11340-017-0320-0
35.
Song
,
Y.
,
Hartwigsen
,
C. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2004
, “
Simulation of Dynamics of Beam Structures With Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
,
273
(
1–2
), pp.
249
276
. 10.1016/S0022-460X(03)00499-1
36.
Kasei
,
S.
,
2007
, “
A Study of Self-Loosening of Bolted Joints Due to Repetition of Small Amount of Slippage at Bearing Surface
,”
J. Adv. Mech. Des. Syst. Manuf.
,
1
(
3
), pp.
358
367
. 10.1299/jamdsm.1.358
37.
Addison
,
P. S.
,
2002
,
The Illustrated Wavelet Transform Handbook Introductory Theory and Applications in Science, Engineering, Medicine and Finance
,
Taylor & Francis
,
New York
.
38.
Gorham
,
D. A.
,
1983
, “
A Numerical Method for the Correction of Dispersion in Pressure Bar Signals
,”
J. Phys. [E]
,
16
(
6
), p.
477
.
39.
Bancroft
,
D.
,
1941
, “
The Velocity of Longitudinal Waves in Cylindrical Bars
,”
Phys. Rev.
,
59
(
7
), pp.
588
593
. 10.1103/PhysRev.59.588
40.
Silva
,
J. M. M.
,
1999
,
Modal Analysis and Testing
,
Springer Netherlands
,
Dordrecht
.
41.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice, and Application
,
Research Studies Press
,
Baldock, Hertfordshire, UK
.
42.
Kim
,
S. B.
,
Spencer
,
B. F.
, and
Yun
,
C.-B.
,
2005
, “
Frequency Domain Identification of Multi-Input, Multi-Output Systems Considering Physical Relationships Between Measured Variables
,”
J. Eng. Mech.
,
131
(
5
), pp.
461
472
. 10.1061/(ASCE)0733-9399(2005)131:5(461)
43.
Kurt
,
M.
,
Eriten
,
M.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2015
, “
Methodology for Model Updating of Mechanical Components with Local Nonlinearities
,”
J. Sound Vib.
,
357
, pp.
331
348
. 10.1016/j.jsv.2015.07.012
44.
Moore
,
K. J.
,
Bunyan
,
J.
,
Tawfick
,
S.
,
Gendelman
,
O. V.
,
Shuangbao
,
L.
,
Leamy
,
M. J.
, and
Vakakis
,
A. F.
,
2018
, “
Non-Reciprocity in the Dynamics of Coupled Oscillators with Nonlinearity, Asymmetry and Scale Hierarchy
,”
Phys Rev E
,
97
(
1
), p.
012219
. 10.1103/PhysRevE.97.012219
45.
Bunyan
,
J.
,
Moore
,
K. J.
,
Mojahed
,
A.
,
Fronk
,
M. D.
,
Leamy
,
M.
,
Tawfick
,
S.
, and
Vakakis
,
A. F.
,
2018
, “
Acoustic Nonreciprocity in a Lattice Incorporating Nonlinearity, Asymmetry, and Internal Scale Hierarchy: Experimental Study
,”
Phys. Rev. E
,
97
(
5
), p.
052211
. 10.1103/PhysRevE.97.052211
You do not currently have access to this content.