Abstract

Nonlinear interaction of Lamb waves with an imperfect joint of plates for the incidence of the lowest-order symmetric (S0) Lamb wave is investigated by perturbation analysis and time-domain numerical simulation. The imperfect joint is modeled as a nonlinear spring-type interface, which expresses interfacial stresses as functions of the displacement discontinuities. In the perturbation analysis, under the assumption of weak nonlinearity, the second-harmonic generation at the joint is examined in the frequency domain by the thin-plate approximation using extensional waves. As a result, the amplitude of the second-harmonic extensional wave is shown to be in good agreement with the result of the S0 mode in a low-frequency range. However, it is found that the thin-plate approximation does not reproduce the amplification of the second-harmonic S0 mode, which occurs due to the resonance of the joint. Furthermore, the time-domain analysis is performed by the elastodynamic finite integration technique (EFIT). When the amplitude of the incident wave is relatively large, the fundamental wave and the second harmonic exhibit different behavior from the results by the perturbation analysis. Specifically, if the incident amplitude is increased, the peak frequency of the second-harmonic amplitude becomes low. The transient behavior of the nonlinear interaction is also examined and discussed based on the results for the weak nonlinearity.

References

References
1.
Kendall
,
K.
, and
Tabor
,
D.
,
1971
, “
An Ultrasonic Study of the Area of Contact Between Stationary and Sliding Surfaces
,”
Proc. R. Soc. A
,
323
(
1554
), pp.
321
340
. 10.1098/rspa.1971.0108
2.
Nagy
,
P. B.
,
1992
, “
Ultrasonic Classification of Imperfect Interfaces
,”
J. Nondestruct. Eval.
,
11
(
3–4
), pp.
127
139
. 10.1007/BF00566404
3.
Drinkwater
,
B. W.
,
Dwyer-Joyce
,
R. S.
, and
Cawley
,
P.
,
1996
, “
A Study of the Interaction Between Ultrasound and a Partially Contacting Solid–Solid Interface
,”
Proc. R. Soc. A
,
452
(
1955
), pp.
2613
2628
. 10.1098/rspa.1996.0139
4.
Brotherhood
,
C. J.
,
Drinkwater
,
B. W.
, and
Guild
,
F. J.
,
2002
, “
The Effect of Compressive Loading on the Ultrasonic Detectability of Kissing Bonds in Adhesive Joints
,”
J. Nondestruct. Eval.
,
21
(
3
), pp.
95
104
. 10.1023/A:1022584822730
5.
Richardson
,
J. M.
,
1979
, “
Harmonic Generation at an Unbonded Interface—I. Planar Interface Between Semi-Infinite Elastic Media
,”
Int. J. Eng. Sci.
,
17
(
1
), pp.
73
85
. 10.1016/0020-7225(79)90008-9
6.
Solodov
,
I. Y.
,
1998
, “
Ultrasonics of Non-Linear Contacts: Propagation, Reflection and NDE-Applications
,”
Ultrasonics
,
36
(
1–5
), pp.
383
390
. 10.1016/S0041-624X(97)00041-3
7.
Donskoy
,
D.
,
Sutin
,
A.
, and
Ekimov
,
A.
,
2001
, “
Nonlinear Acoustic Interaction on Contact Interfaces and Its Use for Nondestructive Testing
,”
NDT&E Int.
,
34
(
4
), pp.
231
238
. 10.1016/S0963-8695(00)00063-3
8.
Pecorari
,
C.
,
2003
, “
Nonlinear Interaction of Plane Ultrasonic Waves With an Interface Between Rough Surfaces in Contact
,”
J. Acoust. Soc. Am.
,
113
(
6
), pp.
3065
3072
. 10.1121/1.1570437
9.
Biwa
,
S.
,
Nakajima
,
S.
, and
Ohno
,
N.
,
2004
, “
On the Acoustic Nonlinearity of Solid–Solid Contact With Pressure-Dependent Interface Stiffness
,”
J. Appl. Mech.
,
71
(
4
), pp.
508
515
. 10.1115/1.1767169
10.
Ohara
,
Y.
,
Mihara
,
T.
, and
Yamanaka
,
K.
,
2006
, “
Effect of Adhesion Force Between Crack Planes on Subharmonic and DC Responses in Nonlinear Ultrasound
,”
Ultrasonics
,
44
(
2
), pp.
194
199
. 10.1016/j.ultras.2005.10.006
11.
Biwa
,
S.
,
Hiraiwa
,
S.
, and
Matsumoto
,
E.
,
2006
, “
Experimental and Theoretical Study of Harmonic Generation at Contacting Interface
,”
Ultrasonics
,
44
(
Dec.
), pp.
e1319
e1322
. 10.1016/j.ultras.2006.05.010
12.
Kim
,
J.-Y.
, and
Lee
,
J.-S.
,
2007
, “
A Micromechanical Model for Nonlinear Acoustic Properties of Interfaces Between Solids
,”
J. Appl. Phys.
,
101
(
4
), p.
043501
. 10.1063/1.2434939
13.
Nam
,
T.
,
Lee
,
T.
,
Kim
,
C.
,
Jhang
,
K.-Y.
, and
Kim
,
N.
,
2012
, “
Harmonic Generation of an Obliquely Incident Ultrasonic Wave in Solid-Solid Contact Interfaces
,”
Ultrasonics
,
52
(
6
), pp.
778
783
. 10.1016/j.ultras.2012.02.008
14.
Blanloeuil
,
P.
,
Meziane
,
A.
, and
Bacon
,
C.
,
2014
, “
Numerical Study of Nonlinear Interaction Between a Crack and Elastic Waves Under an Oblique Incidence
,”
Wave Motion
,
51
(
3
), pp.
425
437
. 10.1016/j.wavemoti.2013.10.002
15.
Yan
,
D.
,
Drinkwater
,
B. W.
, and
Neild
,
S. A.
,
2009
, “
Measurement of the Ultrasonic Nonlinearity of Kissing Bonds in Adhesive Joints
,”
NDT&E Int.
,
42
(
5
), pp.
459
466
. 10.1016/j.ndteint.2009.02.002
16.
Shui
,
G.
,
Wang
,
Y.
,
Huang
,
P.
, and
Qu
,
J.
,
2015
, “
Nonlinear Ultrasonic Evaluation of the Fatigue Damage of Adhesive Joints
,”
NDT&E Int.
,
70
(
Mar.
), pp.
9
15
. 10.1016/j.ndteint.2014.11.002
17.
Ju
,
T.
,
Achenbach
,
J. D.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2019
, “
One-Way Mixing of Collinear Waves in an Adhesive Layer
,”
J. Acoust. Soc. Am.
,
145
(
1
), pp.
110
120
. 10.1121/1.5084734
18.
Biwa
,
S.
, and
Ishii
,
Y.
,
2016
, “
Second-Harmonic Generation in an Infinite Layered Structure With Nonlinear Spring-Type Interfaces
,”
Wave Motion
,
63
(
Jun.
), pp.
55
67
. 10.1016/j.wavemoti.2016.01.004
19.
Ishii
,
Y.
,
Biwa
,
S.
, and
Adachi
,
T.
,
2018
, “
Second-Harmonic Generation in a Multilayered Structure With Nonlinear Spring-Type Interfaces Embedded Between Two Semi-Infinite Media
,”
Wave Motion
,
76
(
Jan.
), pp.
28
41
. 10.1016/j.wavemoti.2017.07.009
20.
de Lima
,
W. J. N.
, and
Hamilton
,
M. F.
,
2003
, “
Finite-Amplitude Waves in Isotropic Elastic Plates
,”
J. Sound Vib.
,
265
(
4
), pp.
819
839
. 10.1016/S0022-460X(02)01260-9
21.
Deng
,
M.
,
2003
, “
Analysis of Second-Harmonic Generation of Lamb Modes Using a Modal Analysis Approach
,”
J. Appl. Phys.
,
94
(
6
), pp.
4152
4159
. 10.1063/1.1601312
22.
Müller
,
M. F.
,
Kim
,
J.-Y.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2010
, “
Characteristics of Second Harmonic Generation of Lamb Waves in Nonlinear Elastic Plates
,”
J. Acoust. Soc. Am.
,
127
(
4
), pp.
2141
2152
. 10.1121/1.3294714
23.
Matsuda
,
N.
, and
Biwa
,
S.
,
2011
, “
Phase and Group Velocity Matching for Cumulative Harmonic Generation in Lamb Waves
,”
J. Appl. Phys.
,
109
(
9
), p.
94903
. 10.1063/1.3569864
24.
Hong
,
M.
,
Su
,
Z.
,
Wang
,
Q.
,
Cheng
,
L.
, and
Qing
,
X.
,
2014
, “
Modeling Nonlinearities of Ultrasonic Waves for Fatigue Damage Characterization: Theory, Simulation, and Experimental Validation
,”
Ultrasonics
,
54
(
3
), pp.
770
778
. 10.1016/j.ultras.2013.09.023
25.
Shkerdin
,
G.
, and
Glorieux
,
C.
,
2010
, “
Nonlinear Clapping Modulation of Lamb Modes by Normally Closed Delamination
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
6
), pp.
1426
1433
. 10.1109/TUFFC.2010.1561
26.
Shen
,
Y.
, and
Giurgiutiu
,
V.
,
2013
, “
Predictive Modeling of Nonlinear Wave Propagation for Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,”
J. Intell. Mater. Syst. Struct.
,
25
(
4
), pp.
506
520
. 10.1177/1045389X13500572
27.
Hong
,
M.
,
Su
,
Z.
,
Lu
,
Y.
,
Sohn
,
H.
, and
Qing
,
X.
,
2015
, “
Locating Fatigue Damage Using Temporal Signal Features of Nonlinear Lamb Waves
,”
Mech. Syst. Signal Process.
,
60–61
(
Aug.
), pp.
182
197
. 10.1016/j.ymssp.2015.01.020
28.
Ciampa
,
F.
,
Scarselli
,
G.
,
Pickering
,
S.
, and
Meo
,
M.
,
2015
, “
Nonlinear Elastic Wave Tomography for the Imaging of Corrosion Damage
,”
Ultrasonics
,
62
(
Sep.
), pp.
147
155
. 10.1016/j.ultras.2015.05.011
29.
Delrue
,
S.
, and
Van Den Abeele
,
K.
,
2015
, “
Detection of Defect Parameters Using Nonlinear Air-Coupled Emission by Ultrasonic Guided Waves at Contact Acoustic Nonlinearities
,”
Ultrasonics
,
63
(
Dec.
), pp.
147
154
. 10.1016/j.ultras.2015.07.001
30.
Yelve
,
N. P.
,
Mitra
,
M.
, and
Mujumdar
,
P. M.
,
2015
, “
Detection of Stiffener Disbonding in a Stiffened Aluminium Panel Using Nonlinear Lamb Wave
,”
Appl. Acoust.
,
89
(
Mar.
), pp.
267
272
. 10.1016/j.apacoust.2014.10.010
31.
Shen
,
Y.
, and
Cesnik
,
C. E. S.
,
2017
, “
Modeling of Nonlinear Interactions Between Guided Waves and Fatigue Cracks Using Local Interaction Simulation Approach
,”
Ultrasonics
,
74
(
Feb.
), pp.
106
123
. 10.1016/j.ultras.2016.10.001
32.
Zhou
,
J.
,
Xiao
,
L.
,
Qu
,
W.
, and
Lu
,
Y.
,
2017
, “
Nonlinear Lamb Wave Based DORT Method for Detection of Fatigue Cracks
,”
NDT&E Int.
,
92
(
Dec.
), pp.
22
29
. 10.1016/j.ndteint.2017.07.009
33.
Yang
,
Y.
,
Ng
,
C.-T.
,
Kotousov
,
A.
,
Sohn
,
H.
, and
Lim
,
H. J.
,
2018
, “
Second Harmonic Generation at Fatigue Cracks by Low-Frequency Lamb Waves: Experimental and Numerical Studies
,”
Mech. Syst. Signal Process.
,
99
(
Jan.
), pp.
760
773
. 10.1016/j.ymssp.2017.07.011
34.
Biwa
,
S.
,
Kishiwada
,
S.
,
Inserra
,
C.
, and
Matsumoto
,
E.
,
2010
, “
Modeling of Flexural Wave Propagation in a Plate With Contacting Interfaces
,”
J. Solid Mech. Mater. Eng.
,
4
(
8
), pp.
1186
1197
. 10.1299/jmmp.4.1186
35.
Biwa
,
S.
,
2019
, “Second-Harmonic Generation at Contacting Interfaces,”
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
T.
Kundu
, ed.,
Springer
,
New York
, pp.
263
299
.
36.
Mori
,
N.
,
Biwa
,
S.
, and
Hayashi
,
T.
,
2013
, “
Reflection and Transmission of Lamb Waves at an Imperfect Joint of Plates
,”
J. Appl. Phys.
,
113
(
7
), p.
074901
. 10.1063/1.4791711
37.
Mori
,
N.
, and
Biwa
,
S.
,
2015
, “
Resonance of an Imperfect Joint of Plates by the Lowest-Order Symmetric Lamb Mode
,”
J. Acoust. Soc. Am.
,
137
(
6
), pp.
3139
3148
. 10.1121/1.4921610
38.
Mori
,
N.
, and
Biwa
,
S.
,
2016
, “
Transmission of Lamb Waves and Resonance at an Adhesive Butt Joint of Plates
,”
Ultrasonics
,
72
(
Dec.
), pp.
80
88
. 10.1016/j.ultras.2016.07.013
39.
Mori
,
N.
, and
Biwa
,
S.
,
2017
, “
Transmission Characteristics of the S0 and A0 Lamb Waves at Contacting Edges of Plates
,”
Ultrasonics
,
81
(
Nov.
), pp.
93
99
. 10.1016/j.ultras.2017.06.009
40.
Mori
,
N.
,
Biwa
,
S.
, and
Kusaka
,
T.
,
2018
, “
Numerical Study of the Second Harmonic Generation of Lamb Waves at an Imperfect Joint of Plates
,”
Proc. Meeting Acoust.
,
34
(
1
), p.
030002
. 10.1121/2.0000868
41.
Fellinger
,
P.
,
Marklein
,
R.
,
Langenberg
,
K. J.
, and
Klaholz
,
S.
,
1995
, “
Numerical Modeling of Elastic Wave Propagation and Scattering With EFIT—Elastodynamic Finite Integration Technique
,”
Wave Motion
,
21
(
1
), pp.
47
66
. 10.1016/0165-2125(94)00040-C
42.
An
,
Z.
,
Wang
,
X.
,
Deng
,
M.
,
Mao
,
J.
, and
Li
,
M.
,
2013
, “
A Nonlinear Spring Model for an Interface Between Two Solids
,”
Wave Motion
,
50
(
2
), pp.
295
309
. 10.1016/j.wavemoti.2012.09.004
43.
Yoshioka
,
N.
, and
Scholz
,
C. H.
,
1989
, “
Elastic Properties of Contacting Surfaces Under Normal and Shear Loads: 1. Theory
,”
J. Geophys. Res.
,
94
(
B12
), pp.
17681
17690
. 10.1029/JB094iB12p17681
44.
Królikowski
,
J.
, and
Szczepek
,
J.
,
1993
, “
Assessment of Tangential and Normal Stiffness of Contact Between Rough Surfaces Using Ultrasonic Method
,”
Wear
,
160
(
2
), pp.
253
258
. 10.1016/0043-1648(93)90428-O
45.
Biwa
,
S.
,
Hiraiwa
,
S.
, and
Matsumoto
,
E.
,
2007
, “
Stiffness Evaluation of Contacting Surfaces by Bulk and Interface Waves
,”
Ultrasonics
,
47
(
1–4
), pp.
123
129
. 10.1016/j.ultras.2007.08.005
46.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1960
,
Mechanics
,
Pergamon Press
,
New York
.
47.
Johnson
,
P. A.
,
Zinszner
,
B.
, and
Rasolofosaon
,
P. N. J.
,
1996
, “
Resonance and Elastic Nonlinear Phenomena in Rock
,”
J. Geophys. Res.
,
101
(
B5
), pp.
11553
11564
. 10.1029/96JB00647
48.
Chen
,
J.
,
Kim
,
J.-Y.
,
Kurtis
,
K. E.
, and
Jacobs
,
L. J.
,
2011
, “
Theoretical and Experimental Study of the Nonlinear Resonance Vibration of Cementitious Materials With an Application to Damage Characterization
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
2728
2737
. 10.1121/1.3647303
49.
Solodov
,
I.
,
2014
, “
Resonant Acoustic Nonlinearity of Defects for Highly-Efficient Nonlinear NDE
,”
J. Nondestruct. Eval.
,
33
(
2
), pp.
252
262
. 10.1007/s10921-014-0229-9
50.
Mori
,
N.
, and
Biwa
,
S.
,
2015
, “
Interaction of Lamb Waves With an Imperfect Joint of Plates: Reflection, Transmission and Resonance
,”
Phys. Procedia
,
70
(
7
), pp.
480
483
. 10.1016/j.phpro.2015.08.290
You do not currently have access to this content.