Abstract

The mechanics of phase transforming cellular materials (PXCMs) with three different chiral honeycomb architectures, viz., hexachiral, tetra-anti-chiral, and tetra-chiral, are investigated under quasi-static loading/unloading. Each PXCM comprises interconnected unit cells consisting of tape springs rigidly affixed to circular nodes that can rotate and/or translate. The phase change is associated with snap-through instability due to bending of the tape springs and corresponds to sudden changes in the geometry of the unit cells from one stable configuration to another stable (or metastable) configuration during loading/unloading. When compared with similar chiral materials with flat ligaments, the chiral PXCMs exhibit a significantly higher energy dissipation in quasi-static experiments. The hexachiral PXCM was selected for detailed parametric analysis with finite element simulations including 21 models constructed to investigate the effects of PXCM geometry on phase change and energy dissipation. An analytical formalism is developed to predict the minimum compressive load required to induce phase transformation and snap-through. The formalism predictions are compared with those from finite element simulations. An Ashby plot is developed in which the energy dissipated per unit volume versus work conjugate plateau stress of the H-PXCM is compared with other energy absorbing materials.

References

References
1.
Yang
,
R. J.
,
Chen
,
C. J.
, and
Lee
,
C. H.
,
1996
, “
Bead Pattern Optimization
,”
Struct. Optim.
,
12
(
4
), pp.
217
221
. 10.1007/BF01197359
2.
Ostoja-Starzewski
,
M.
,
2006
, “
Material Spatial Randomness: From Statistical to Representative Volume Element
,”
Probab. Eng. Mech.
,
21
(
2
), pp.
112
132
. 10.1016/j.probengmech.2005.07.007
3.
Bouaziz
,
O.
,
Bréchet
,
Y.
, and
Embury
,
J. D.
,
2008
, “
Heterogeneous and Architectured Materials: A Possible Strategy for Design of Structural Materials
,”
Adv. Eng. Mater.
,
10
(
1–2
), pp.
24
36
. 10.1002/adem.200700289
4.
Ritche
,
R. O.
,
2011
, “
The Conflicts Between Strength and Toughness
,”
Nat. Mater.
,
10
(
11
), pp.
817
822
. 10.1038/nmat3115
5.
Barthelat
,
F.
,
2015
, “
Architectured Materials in Engineering and Biology: Fabrication, Structure, Mechanics and Performance
,”
Int. Mater. Rev.
,
60
(
8
), pp.
413
430
. 10.1179/1743280415Y.0000000008
6.
Chen
,
D.
, and
Zheng
,
X.
,
2018
, “
Multi-Material Additive Manufacturing of Metamaterials With Giant, Tailorable Negative Poisson’s Ratios
,”
Sci. Rep.
,
8
, Article: 9139. 10.1038/s41598-018-26980-7
7.
Mirkhalaf
,
M.
,
Zhou
,
T.
, and
Barthelat
,
F.
,
2018
, “
Simultaneous Improvements of Strength and Toughness in Topologically Interlocked Ceramics
,”
Proc. Natl. Acad. Sci. USA
,
115
(
37
), pp.
9128
9133
. 10.1073/pnas.1807272115
8.
Ashby
,
M.
,
2013
, “
Designing Architectured Materials
,”
Scr. Mater.
,
68
(
1
), pp.
4
7
. 10.1016/j.scriptamat.2012.04.033
9.
Bertoldi
,
K.
,
2017
, “
Harnessing Instabilities to Design Tunable Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
51
61
. 10.1146/annurev-matsci-070616-123908
10.
Schaedler
,
T. A.
, and
Carter
,
W. B.
,
2016
, “
Architected Cellular Materials
,”
Annu. Rev. Mater. Res.
,
46
, pp.
187
210
. 10.1146/annurev-matsci-070115-031624
11.
Schaedler
,
T. A.
,
Jacobsen
,
A. J.
,
Torrents
,
A.
,
Sorensen
,
A. E.
,
Lian
,
J.
,
Greer
,
J. R.
,
Valdevit
,
L.
, and
Carter
,
W. B.
,
2011
, “
Ultralight Metallic Microlattices
,”
Science
,
334
(
6058
), pp.
962
965
. 10.1126/science.1211649
12.
Brechet
,
Y.
, and
Embury
,
J. D.
,
2013
, “
Architectured Materials: Expanding Materials Space
,”
Scr. Mater.
,
68
(
1
), pp.
1
3
. 10.1016/j.scriptamat.2012.07.038
13.
Pham
,
M.-S.
,
Liu
,
C.
,
Todd
,
I.
, and
Lertthanasarn
,
J.
,
2019
, “
Damage-Tolerant Architected Materials Inspired by Crystal Microstructure
,”
Nature
,
565
(
7739
), pp.
305
311
. 10.1038/s41586-018-0850-3
14.
Banhart
,
J.
,
2003
, “
Aluminum Foams: On the Road to Real Applications
,”
MRS Bull.
,
28
(
4
), pp.
290
295
. 10.1557/mrs2003.83
15.
Mirkhalaf
,
M.
,
Zhou
,
T.
, and
Barthelat
,
F.
,
2017
, “
Design, 3D Printing and Testing of Architectured Materials With Bistable Interlocks
,”
Extrem. Mech. Lett.
,
11
, pp.
1
7
. 10.1016/j.eml.2016.11.005
16.
Moini
,
M.
,
Olek
,
J.
,
Youngblood
,
J.
,
Magee
,
B.
, and
Zavattieri
,
P. D.
,
2019
, “
Additive Manufacturing and Performance of Architectured Cement-Based Materials
,”
Adv. Mater.
,
30
(
43
), pp.
1
11
. 10.1002/adma.201870326
17.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extreme Mech. Lett.
,
4
, pp.
52
60
. 10.1016/j.eml.2015.08.001
18.
Frenzel
,
T.
,
Findeisen
,
C.
,
Kadic
,
M.
,
Gumbsch
,
P.
, and
Wegener
,
M.
,
2016
, “
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers
,”
Adv. Mater.
,
28
, pp.
5865
5870
. 10.1002/adma.201600610
19.
Findeisen
,
C.
,
Hohe
,
J.
,
Kadic
,
M.
, and
Gumbsch
,
P.
,
2017
, “
Characteristics of Mechanical Metamaterials Based on Buckling Elements
,”
J. Mech. Phys. Solids
,
102
, pp.
151
164
. 10.1016/j.jmps.2017.02.011
20.
Debeau
,
D. A.
,
Seepersad
,
C. C.
, and
Haberman
,
M. R.
,
2018
, “
Impact Behavior of Negative Stiffness Honeycomb Materials
,”
J. Mater. Res.
,
33
(
3
), pp.
290
299
. 10.1557/jmr.2018.7
21.
Ha
,
C. S.
,
Lakes
,
R. S.
, and
Plesha
,
M. E.
,
2018
, “
Design, Fabrication, and Analysis of Lattice Exhibiting Energy Absorption via Snap-Through Behavior
,”
Mater. Des.
,
141
, pp.
426
437
. 10.1016/j.matdes.2017.12.050
22.
Pontecorvo
,
M. E.
,
Barbarino
,
S.
,
Murray
,
G. J.
, and
Gandhi
,
F. S.
,
2013
, “
Bistable Arches for Morphing Applications
,”
J. Intell. Mater. Syst. Struct.
,
24
(
3
), pp.
274
286
. 10.1177/1045389X12457252
23.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Architected Materials: Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
8065
. 10.1002/adma.201670255
24.
Che
,
K.
, and
Qi
,
H. J.
,
2018
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), pp.
1
10
. 10.1115/1.4034706
25.
Meaud
,
J.
,
2018
, “
Multistable Two-Dimensional Spring-Mass Lattices With Tunable Band Gaps and Wave Directionality
,”
J. Sound Vib.
,
434
, pp.
44
62
. 10.1016/j.jsv.2018.07.032
26.
Meaud
,
J.
, and
Che
,
K.
,
2017
, “
Tuning Elastic Wave Propagation in Multistable Architected Materials
,”
Int. J. Solids Struct.
,
122
, pp.
69
80
. 10.1016/j.ijsolstr.2017.05.042
27.
Bobbert
,
F. S. L.
,
Janbaz
,
S.
, and
Zadpoor
,
A. A.
,
2018
, “
Towards Deployable Meta-Implants
,”
J. Mater. Chem. B
,
6
(
21
), pp.
3449
3455
. 10.1039/C8TB00576A
28.
Zhang
,
Y.
,
Restrepo
,
D.
,
Velay-Lizancos
,
M.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
, “
Energy Dissipation in Functional Two-Dimensional Phase Transforming Cellular Materials
,”
Sci. Rep.
(in review).
29.
Abu-Farha
,
F.
,
Hu
,
X.
,
Sun
,
X.
,
Ren
,
Y.
,
Hector
,
L. G.
, Jr.
,
Thomas
,
G.
, and
Brown
,
T. W.
,
2018
, “
In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels
,”
Metall. Mater. Trans. A
,
49
(
7
), pp.
2583
2596
. 10.1007/s11661-018-4660-x
30.
Redlunn
,
B.
,
Daly
,
S.
,
Hector
,
L. G.
, Jr.
,
Zavattieri
,
P. D.
, and
Shaw
,
J.
,
2013
, “
Tips and Tricks for Characterizing Shape Memory Wire Part 5: Full-Field Strain Measurement by Digital Image Correlation
,”
Exp. Tech.
,
37
(
3
), pp.
62
78
. 10.1111/j.1747-1567.2011.00717.x
31.
Mansfield
,
E. H.
,
1973
, “
Large-Deflection Torsion and Flexure of Initially Curved Strips
,”
Proc. R. Soc. Lond. A
,
334
(
1598
), pp.
279
298
.
32.
Seffen
,
K. A.
, and
Pellegrino
,
S.
,
1999
, “
Deployment Dynamics of Tape Springs
,”
Proc. R. Soc. Lond. A
,
455
(
1983
), pp.
1003
1048
. 10.1098/rspa.1999.0347
33.
Soykasap
,
O.
,
2007
, “
Analysis of Tape Spring Hinges
,”
Int. J. Mech. Sci.
,
49
(
7
), pp.
853
860
. 10.1016/j.ijmecsci.2006.11.013
34.
Guinot
,
F.
,
Bourgeois
,
S.
,
Cochelin
,
B.
, and
Blanchard
,
L.
,
2012
, “
A Planar Rod Model With Flexible Thin-Walled Cross-Sections. Application to the Folding of Tape Springs
,”
Int. J. Solids Struct.
,
49
(
1
), pp.
73
86
. 10.1016/j.ijsolstr.2011.09.011
35.
Prall
,
D.
, and
Lakes
,
R. S.
,
1996
, “
Properties of a Chiral Honeycomb With a Poisson’s Ratio of -1
,”
Int. J. Mech. Sci.
,
39
(
1
), pp.
305
314
.
36.
Runkel
,
F.
,
Molinari
,
G.
,
Arrieta
,
A. F.
, and
Ermanni
,
P.
,
2017
, “
Tailorable Stiffness Chiral Metastructure
,”
Phys. Status Solidi
,
11
(
10
), p.
1700233
, 1–6. 10.1002/pssr.201700233
37.
Runkel
,
F.
,
Ramstein
,
G.
,
Molinari
,
G.
,
Arrieta
,
A. F.
, and
Ermanni
,
P.
,
2019
, “
Mechanics of Curved-Ligament Hexachiral Metastructures Under Planar Deformations
,”
J. Mech. Phys. Solids
,
125
, pp.
145
163
. 10.1016/j.jmps.2018.12.001
38.
Zhang
,
Q.
,
Yang
,
X.
,
Li
,
P.
,
Huang
,
G.
,
Feng
,
S.
,
Shen
,
C.
,
Han
,
B.
,
Zhang
,
X.
,
Jin
,
F.
,
Xu
,
F.
, and
Lu
,
T. J.
,
2015
, “
Bioinspired Engineering of Honeycomb Structure—Using Nature to Inspire Human Innovation
,”
Prog. Mater. Sci.
,
74
, pp.
332
400
. 10.1016/j.pmatsci.2015.05.001
39.
Kolla
,
A.
,
Ju
,
J.
,
Summers
,
J. D.
,
Fadel
,
G.
, and
Ziegert
,
J. C.
,
2010
, “
Design of Chiral Honeycomb Meso-Structures for High Shear Flexure
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Aug. 13–16
,
Montreal, Quebec, Canada
, Volume 1: 36th Design Automation Conference, Parts A and B, pp.
43
49
. 10.1115/detc2010-28557
40.
Seffen
,
K. A.
,
Pellegrino
,
S.
, and
Parks
,
G. T.
,
2000
, “
Deployment of a Panel by Tape-Spring Hinges
,”
IUTAM-IASS Symposium on Deployable Structures: Theory and Applications
,
Cambridge, UK
,
Sept. 6–9
, pp.
355
364
. 10.1007/978-94-015-9514-8_37
41.
Triantafyllidis
,
N.
, and
Schnaidt
,
W. C.
,
1993
, “
Comparison of Microscopic and Macroscopic Instabilities in a Class of Two-Dimensional Periodic Composites
,”
J. Mech. Phys. Solids
,
41
(
9
), pp.
1533
1565
. 10.1016/0022-5096(93)90039-I
42.
Lόpez Jiménez
,
F.
, and
Triantafyllidis
,
N.
,
2013
, “
Buckling of Rectangular and Hexagonal Honeycomb Under Combined Axial Compression and Transverse Shear
,”
Int. J. Solids Struct.
,
50
(
24
), pp.
3934
3946
. 10.1016/j.ijsolstr.2013.08.001
43.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
. 10.1002/nme.2579
44.
Unstable Collapse and Postbuckling Analysis
, ABAQUS Analysis User’s Guide, ABAQUS 6.13, © Dassault Systémes,
2013
.
45.
Introducing a Geometric Imperfection into a Mode
, ABAQUS Analysis User’s Guide, ABAQUS 6.13, © Dassault Systémes,
2013
.
46.
Tornberg
,
A.-K.
, and
Engquist
,
B.
,
2003
, “
Regularization Techniques for Numerical Approximation of PDEs With Singularities
,”
J. Sci. Comput.
,
19
(
1–3
), pp.
527
552
. 10.1023/A:1025332815267
47.
Schioler
,
T.
, and
Pellegrino
,
S.
,
2008
, “
A Bistable Structural Element
,”
Proc. Inst. Mech. Eng. Pt. C: J. Mech. Eng. Sci.
,
222
(
11
), pp.
2045
2051
. 10.1243/09544062JMES982
48.
Myers
,
Jack A.
1962
, “
Handbook of Equations for Mass and Area Properties of Various Geometrical Shapes. No. TP-2838
,” Naval Ordnance Test Station China Lake, CA.
49.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
New York, NY
.
You do not currently have access to this content.