Abstract

Mechanical metamaterials are artificial composites with tunable advanced mechanical properties. Particularly, interesting types of mechanical metamaterials are flexible metamaterials, which harness internal rotations and instabilities to exhibit programable deformations. However, to date, such materials have mostly been considered using nearly purely elastic constituents such as neo-Hookean rubbers. Here, we experimentally explore the mechanical snap-through response of metamaterials that are made of constituents that exhibit large viscoelastic relaxation effects, encountered in the vast majority of rubbers, in particular, in 3D printed rubbers. We show that they exhibit a very strong sensitivity to the loading rate. In particular, the mechanical instability is strongly affected beyond a certain loading rate. We rationalize our findings with a compliant mechanism model augmented with viscoelastic interactions, which qualitatively captures well the reported behavior, suggesting that the sensitivity to the loading rate stems from the nonlinear and inhomogeneous deformation rate, provoked by internal rotations. Our findings bring a novel understanding of metamaterials in the dynamical regime and open up avenues for the use of metamaterials for dynamical shape-changing as well as vibration and impact damping applications.

References

References
1.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
. 10.1126/science.235.4792.1038
2.
Bertoldi
,
K.
,
Reis
,
P. M.
,
Willshaw
,
S.
, and
Mullin
,
T.
,
2010
, “
Negative Poisson’s Ratio Behavior Induced by an Elastic Instability
,”
Adv. Mater.
,
22
(
3
), pp.
361
366
. 10.1002/adma.v22:3
3.
Babaee
,
S.
,
Shim
,
J.
,
Weaver
,
J. C.
,
Chen
,
E. R.
,
Patel
,
N.
, and
Bertoldi
,
K.
,
2013
, “
3D Soft Metamaterials With Negative Poisson’s Ratio
,”
Adv. Mater.
,
25
(
36
), pp.
5044
5049
. 10.1002/adma.201301986
4.
Florijn
,
B.
,
Coulais
,
C.
, and
van Hecke
,
M.
,
2014
, “
Programmable Mechanical Metamaterials
,”
Phys. Rev. Lett.
,
113
(
17
), p.
175503
. 10.1103/PhysRevLett.113.175503
5.
Florijn
,
B.
,
Coulais
,
C.
, and
van Hecke
,
M.
,
2016
, “
Programmable Mechanical Metamaterials: The Role of Geometry
,”
Soft Matter
,
12
(
42
), pp.
8736
8743
. 10.1039/C6SM01271J
6.
Overvelde
,
J. T. B.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K.
,
2017
, “
Rational Design of Reconfigurable Prismatic Architected Materials
,”
Nature
,
541
(
7637
), pp.
347
352
. 10.1038/nature20824
7.
Coulais
,
C.
,
Sabbadini
,
A.
,
Vink
,
F.
, and
van Hecke
,
M.
,
2018
, “
Multi-Step Self-Guided Pathways for Shape-Changing Metamaterials
,”
Nature
,
561
(
7724
), pp.
512
515
. 10.1038/s41586-018-0541-0
8.
Coulais
,
C.
,
Sounas
,
D.
, and
Alù
,
A.
,
2017
, “
Static Non-Reciprocity in Mechanical Metamaterials
,”
Nature
,
542
(
7642
), pp.
461
464
. 10.1038/nature21044
9.
Frenzel
,
T.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2017
, “
Three-Dimensional Mechanical Metamaterials With a Twist
,”
Science
,
358
(
6366
), pp.
1072
1074
. 10.1126/science.aao4640
10.
Rafsanjani
,
A.
, and
Pasini
,
D.
,
2016
, “
Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs
,”
Extreme Mech. Lett.
,
9
(
2
), pp.
291
296
. 10.1016/j.eml.2016.09.001
11.
Che
,
K.
,
Yuan
,
C.
,
Wu
,
J.
,
Qi
,
H.
, and
Meaud
,
J.
,
2017
, “
Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence
,”
ASME J. Appl. Mech.
,
84
(
1
), p.
011004
. 10.1115/1.4034706
12.
Restrepo
,
D.
,
Mankame
,
N. D.
, and
Zavattieri
,
P. D.
,
2015
, “
Phase Transforming Cellular Materials
,”
Extreme Mech. Lett.
,
4
, pp.
52
60
. 10.1016/j.eml.2015.08.001
13.
Frenzel
,
T.
,
Findeisen
,
C.
,
Kadic
,
M.
,
Gumbsch
,
P.
, and
Wegener
,
M.
,
2016
, “
Tailored Buckling Microlattices as Reusable Light-Weight Shock Absorbers
,”
Adv. Mater.
,
28
(
28
), pp.
5865
5870
. 10.1002/adma.201600610
14.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
. 10.1002/adma.v27.29
15.
Correa
,
D. M.
,
Klatt
,
T.
,
Cortes
,
S.
,
Haberman
,
M.
,
Kovar
,
D.
, and
Seepersad
,
C.
,
2015
, “
Negative Stiffness Honeycombs for Recoverable Shock Isolation
,”
Rapid Prototyping J.
,
21
(
2
), pp.
193
200
. 10.1108/RPJ-12-2014-0182
16.
Schaedler
,
T. A.
,
Ro
,
C. J.
,
Sorensen
,
A. E.
,
Eckel
,
Z.
,
Yang
,
S. S.
,
Carter
,
W. B.
, and
Jacobsen
,
A. J.
,
2014
, “
Designing Metallic Microlattices for Energy Absorber Applications
,”
Adv. Eng. Mater.
,
16
(
3
), pp.
276
283
. 10.1002/adem.v16.3
17.
Deng
,
B.
,
Raney
,
J. R.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2017
, “
Elastic Vector Solitons in Soft Architected Materials
,”
Phys. Rev. Lett.
,
118
(
20
), p.
204102
. 10.1103/PhysRevLett.118.204102
18.
Deng
,
B.
,
He
,
P. W. Q.
,
Tournat
,
V.
, and
Bertoldi
,
K.
,
2018
, “
Metamaterials With Amplitude Gaps for Elastic Solitons
,”
Nat. Commun.
,
9
(
1
), p.
3410
. 10.1038/s41467-018-05908-9
19.
Raney
,
J. R.
,
Nadkarni
,
N.
,
Daraio
,
C.
,
Kochmann
,
D. M.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2016
, “
Stable Propagation of Mechanical Signals in Soft Media Using Stored Elastic Energy
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
35
), pp.
9722
9727
. 10.1073/pnas.1604838113
20.
Nadkarni
,
N.
,
Arrieta
,
A. F.
,
Chong
,
C.
,
Kochmann
,
D. M.
, and
Daraio
,
C.
,
2016
, “
Unidirectional Transition Waves in Bistable Lattices
,”
Phys. Rev. Lett.
,
116
(
24
), p.
244501
. 10.1103/PhysRevLett.116.244501
21.
Coulais
,
C.
,
2016
, “
Periodic Cellular Materials With Nonlinear Elastic Homogenized Stress-Strain Response at Small Strains
,”
Int. J. Solids Struct.
,
97–98
, pp.
226
238
. 10.1016/j.ijsolstr.2016.07.025
22.
Coulais
,
C.
,
Kettenis
,
C.
, and
van Hecke
,
M.
,
2017
, “
A Characteristic Length-Scale Causes Anomalous Size Effects and Boundary Programmability in Mechanical Metamaterials
,”
Nat. Phys.
,
14
(
1
), pp.
40
44
. 10.1038/nphys4269
23.
Wang
,
A.
,
Shang
,
J.
,
Li
,
X.
,
Luo
,
Z.
, and
Wu
,
W.
,
2018
, “
Vibration and Damping Characteristics of 3D Printed Kagome Lattice With Viscoelastic Material Filling
,”
Sci. Rep.
,
8
(
1
), p.
9604
. 10.1038/s41598-018-27963-4
24.
Parnell
,
W. J.
, and
De Pascalis
,
R.
,
2019
, “
Soft Metamaterials With Dynamic Viscoelastic Functionality Tuned by Pre-Deformation
,”
Philos. Trans. R. Soc. A
,
377
(
2144
), p.
20180072
. 10.1098/rsta.2018.0072
25.
Gomez
,
M.
,
Moulton
,
D. E.
, and
Vella
,
D.
,
2019
, “
Dynamics of Viscoelastic Snap-Through
,”
J. Mech. Phys.
,
124
, pp.
781
813
. 10.1016/j.jmps.2018.11.020
26.
Arrieta
,
A. F.
,
Wagg
,
D. J.
, and
Neild
,
S. A.
,
2011
, “
Dynamic Snap-Through for Morphing of Bi-Stable Composite Plates
,”
J. Intell. Mater. Syst. Struct.
,
22
(
2
), pp.
103
112
. 10.1177/1045389X10390248
27.
Wiechert
,
E.
,
1893
, “
Gesetze Der Elastischen Nachwirkung Für Constante Temperatur
,”
Ann. Phys.
,
286
(
11
), pp.
546
570
. 10.1002/(ISSN)1521-3889
28.
Christensen
,
R.
,
2003
,
Theory of Viscoelasticity
,
2nd ed.
,
Dover Publications Inc.
,
New York
.
29.
Lakes
,
R.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.