Abstract

This paper presents thermally actuated hierarchical metamaterials with large linear and rotational motion made of passive solids. Their working principle relies on the definition of a triangular bi-material unit that uses temperature changes to locally generate in its internal members distinct rates of expansion that translate into anisotropic motions at the unit level and large deployment at the global scale. Obtained from solid mechanics theory, thermal experiments on fabricated proof-of-concepts and numerical analysis, the results show that introducing recursive patterns of just two orders of the hierarchy is highly effective in amplifying linear actuation at levels of nearly nine times the initial height, and rotational actuation of almost 18.5 times the initial skew angle.

References

1.
Ding
,
Z.
,
Yuan
,
C.
,
Peng
,
X.
,
Wang
,
T.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2017
, “
Direct 4D Printing Via Active Composite Materials
,”
Sci. Adv.
,
3
(
4
), p.
e1602890
. 10.1126/sciadv.1602890
2.
Ge
,
Q.
,
Sakhaei
,
A. H.
,
Lee
,
H.
,
Dunn
,
C. K.
,
Fang
,
N. X.
, and
Dunn
,
M. L.
,
2016
, “
Multimaterial 4D Printing With Tailorable Shape Memory Polymers
,”
Sci. Rep.
,
6
, p.
31110
. 10.1038/srep31110
3.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), pp.
1700360
. 10.1002/adma.201700360
4.
Zhang
,
Q.
,
Wommer
,
J.
,
O’Rourke
,
C.
,
Teitelman
,
J.
,
Tang
,
Y.
,
Robison
,
J.
,
Lin
,
G.
, and
Yin
,
J.
,
2017
, “
Origami and Kirigami Inspired Self-Folding for Programming Three-Dimensional Shape Shifting of Polymer Sheets With Light
,”
Extreme Mech. Lett.
,
11
(
Suppl. C
), pp.
111
120
. 10.1016/j.eml.2016.08.004
5.
Breger
,
J. C.
,
Yoon
,
C.
,
Xiao
,
R.
,
Kwag
,
H. R.
,
Wang
,
M. O.
,
Fisher
,
J. P.
,
Nguyen
,
T. D.
, and
Gracias
,
D. H.
,
2015
, “
Self-Folding Thermo-Magnetically Responsive Soft Microgrippers
,”
ACS Appl. Mater. Interfaces
,
7
(
5
), pp.
3398
3405
. 10.1021/am508621s
6.
Stoychev
,
G.
,
Puretskiy
,
N.
, and
Ionov
,
L.
,
2011
, “
Self-Folding All-Polymer Thermoresponsive Microcapsules
,”
Soft Matter
,
7
(
7
), pp.
3277
3279
. 10.1039/c1sm05109a
7.
Yong
,
Z.
, and
Tzu-Hsuan
,
C.
,
2015
, “
A Review of Microelectromechanical Systems for Nanoscale Mechanical Characterization
,”
J. Micromech. Microeng.
,
25
(
9
), p.
093001
. 10.1088/0960-1317/25/9/093001
8.
Mao
,
Y.
,
Ding
,
Z.
,
Yuan
,
C.
,
Ai
,
S.
,
Isakov
,
M.
,
Wu
,
J.
,
Wang
,
T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2016
, “
3D Printed Reversible Shape Changing Components With Stimuli Responsive Materials
,”
Sci. Rep.
,
6
, p.
24761
. 10.1038/srep24761
9.
Wei
,
K.
,
Peng
,
Y.
,
Wang
,
K.
,
Duan
,
S.
,
Yang
,
X.
, and
Wen
,
W.
,
2018
, “
Three Dimensional Lightweight Lattice Structures With Large Positive, Zero and Negative Thermal Expansion
,”
Compos. Struct.
,
188
, pp.
287
296
. 10.1016/j.compstruct.2018.01.030
10.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies
,”
ASME J. Mech. Design
,
135
(
6
), p.
061004
. 10.1115/1.4024122
11.
Wang
,
Q.
,
Jackson
,
J. A.
,
Ge
,
Q.
,
Hopkins
,
J. B.
,
Spadaccini
,
C. M.
, and
Fang
,
N. X.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phys. Rev. Lett.
,
117
(
17
), p.
175901
. 10.1103/PhysRevLett.117.175901
12.
Steeves
,
C. A.
,
Maxwell
,
P. T.
,
He
,
M.
, and
Evans
,
A. G.
,
2007
, “
Design of a Robust, Multifunctional Thermal Protection System Incorporating Zero Expansion Lattices
,”
Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition
,
Seattle, WA
,
Nov. 11–15
, pp.
255
260
. 10.1115/imece2007-42435
13.
Xu
,
H.
,
Farag
,
A.
, and
Pasini
,
D.
,
2017
, “
Multilevel Hierarchy in Bi-Material Lattices With High Specific Stiffness and Unbounded Thermal Expansion
,”
Acta. Mater.
,
134
, pp.
155
166
. 10.1016/j.actamat.2017.05.059
14.
Steeves
,
C. A.
,
dos Santos e Lucato
,
S. L.
,
He
,
M.
,
Antinucci
,
E.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
2007
, “
Concepts for Structurally Robust Materials That Combine Low Thermal Expansion With High Stiffness
,”
J. Mech. Phys. Solids
,
55
(
9
), pp.
1803
1822
. 10.1016/j.jmps.2007.02.009
15.
Lehman
,
J.
, and
Lakes
,
R. S.
,
2014
, “
Stiff, Strong, Zero Thermal Expansion Lattices Via Material Hierarchy
,”
Compos. Struct.
,
107
, pp.
654
663
. 10.1016/j.compstruct.2013.08.028
16.
Wei
,
K.
,
Chen
,
H.
,
Pei
,
Y.
, and
Fang
,
D.
,
2016
, “
Planar Lattices With Tailorable Coefficient of Thermal Expansion and High Stiffness Based on Dual-Material Triangle Unit
,”
J. Mech. Phys. Solids
,
86
, pp.
173
191
. 10.1016/j.jmps.2015.10.004
17.
Lakes
,
R.
,
1996
, “
Cellular Solid Structures With Unbounded Thermal Expansion
,”
J. Mater. Sci. Lett.
,
15
(
6
), pp.
475
477
. 10.1007/BF00275406
18.
Xu
,
H.
,
Farag
,
A.
, and
Pasini
,
D.
,
2018
, “
Routes to Program Thermal Expansion in Three-Dimensional Lattice Metamaterials Built From Tetrahedral Building Blocks
,”
J. Mech. Phys. Solids
,
117
, pp.
54
87
. 10.1016/j.jmps.2018.04.012
19.
Nye
,
J. F.
,
1985
,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Clarendon Press
,
Oxford
20.
Santiago-Prowald
,
J.
, and
Baier
,
H.
,
2013
, “
Advances in Deployable Structures and Surfaces for Large Apertures in Space
,”
CEAS Space J.
,
5
(
3
), pp.
89
115
. 10.1007/s12567-013-0048-3
21.
Uchino
,
K.
,
1998
, “
Materials Issues in Design and Performance of Piezoelectric Actuators: an Overview
,”
Acta Mater.
,
46
(
11
), pp.
3745
3753
. 10.1016/S1359-6454(98)00102-5
22.
Van Humbeeck
,
J.
,
1999
, “
Non-medical Applications of Shape Memory Alloys
,”
Mater. Sci. Eng. A
,
273
, pp.
134
148
. 10.1016/S0921-5093(99)00293-2
23.
Bar-Cohen
,
Y.
,
2004
,
Electroactive Polymer (EAP) Actuators as Artificial Muscles : Reality, Potential, and Challenges
,
SPIE Press
,
Bellingham, WA
.
24.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
25.
Aziz
,
S.
,
Naficy
,
S.
,
Foroughi
,
J.
,
Brown
,
H. R.
, and
Spinks
,
G. M.
,
2017
, “
Effect of Anisotropic Thermal Expansion on the Torsional Actuation of Twist Oriented Polymer Fibres
,”
Polymer
,
129
, pp.
127
134
. 10.1016/j.polymer.2017.09.052
26.
Zheng
,
X.
,
Smith
,
W.
,
Jackson
,
J.
,
Moran
,
B.
,
Cui
,
H.
,
Chen
,
D.
,
Ye
,
J.
,
Fang
,
N.
,
Rodriguez
,
N.
,
Weisgraber
,
T.
, and
Spadaccini
,
C. M.
,
2016
, “
Multiscale Metallic Metamaterials
,”
Nat. Mater.
,
15
(
10
), pp.
1100
1106
. 10.1038/nmat4694
You do not currently have access to this content.