Abstract

Band gaps in metamaterials and phononic crystals provide a way to engineer vibration mitigation into a material’s geometry. Here, we present a comprehensive experimental characterization of band gaps in lattice-resonator metastructures, which have been previously analyzed with finite element simulations, to better understand this phenomenon in 3D-printed materials. We fabricate the metastructures with a new approach to obtain multimaterial structures using stereolithography. We experimentally characterize the material’s frequency-dependent storage and loss modulus over the band gap frequencies to confirm that the measured band gaps are due to geometry and not due to material properties. Experimental results using both frequency sweep and impulse excitations show that band gaps and attenuation efficiencies strongly depend on the lattice geometry as well as loading direction, and a comparison between axial and bending excitation responses reveals frequency ranges of “fluid-like” and “optical-like” behaviors. Comparison between finite element simulations and experimental results demonstrate the robustness of the metastructure design. While the experiments used here are well established, their combination allows us to gain additional insights into band gaps measurements. Specifically, we show that the coherence function, a common concept in signal processing, is a strong predictor of band gaps in linear materials and that the attenuation efficiency inside the measured band gap can be physically limited by fluid–structure interactions.

References

References
1.
Martínez-Sala
,
R.
,
Sancho
,
J.
,
Sánchez
,
J. V.
,
Gómez
,
V.
,
Llinares
,
J.
, and
Meseguer
,
F.
,
1995
, “
Sound Attenuation by Sculpture
,”
Nature
,
378
(
6554
), p.
241
. 10.1038/378241a0
2.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
. 10.1126/SCIENCE.289.5485.1734
3.
Chen
,
H.
, and
Chan
,
C. T.
,
2007
, “
Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials
,”
Appl. Phys. Lett.
,
91
(
18
), p.
183518
. 10.1063/1.2803315
4.
Kim
,
M. S.
,
Lee
,
W. R.
,
Kim
,
Y. Y.
, and
Oh
,
J. H.
,
2018
, “
Transmodal Elastic Metasurface for Broad Angle Total Mode Conversion
,”
Appl. Phys. Lett.
,
112
(
24
), p.
241905
. 10.1063/1.5032157
5.
Zhu
,
R.
,
Liu
,
X. N.
,
Hu
,
G. K.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2014
, “
Negative Refraction of Elastic Waves at the Deep-Subwavelength Scale in a Single-Phase Metamaterial
,”
Nat. Commun.
,
5
, p.
5510
. 10.1038/ncomms6510
6.
Zhang
,
S.
,
Yin
,
L.
, and
Fang
,
N.
,
2009
, “
Focusing Ultrasound With an Acoustic Metamaterial Network
,”
Phys. Rev. Lett.
,
102
(
19
), p.
194301
. 10.1103/PhysRevLett.102.194301
7.
García-Pablos
,
D.
,
Sigalas
,
M.
,
Montero de Espinosa
,
F. R.
,
Torres
,
M.
,
Kafesaki
,
M.
, and
García
,
N.
,
2000
, “
Theory and Experiments on Elastic Band Gaps
,”
Phys. Rev. Lett.
,
84
(
19
), pp.
4349
4352
. 10.1103/PhysRevLett.84.4349
8.
Montero De Espinosa
,
F. R.
,
Jiménez
,
E.
, and
Torres
,
M.
,
1998
, “
Ultrasonic Band Gap in a Periodic Two-Dimensional Composite
,”
Phys. Rev. Lett.
,
80
(
6
), pp.
1208
1211
. 10.1103/PhysRevLett.80.1208
9.
Baravelli
,
E.
, and
Ruzzene
,
M.
,
2013
, “
Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
. 10.1016/J.JSV.2013.08.014
10.
Wang
,
P.
,
Casadei
,
F.
,
Shan
,
S.
,
Weaver
,
J. C.
, and
Bertoldi
,
K.
,
2014
, “
Harnessing Buckling to Design Tunable Locally Resonant Acoustic Metamaterials
,”
Phys. Rev. Lett.
,
113
(
1
), p.
014301
. 10.1103/PhysRevLett.113.014301
11.
D’Alessandro
,
L.
,
Zega
,
V.
,
Ardito
,
R.
, and
Corigliano
,
A.
,
2018
, “
3D Auxetic Single Material Periodic Structure With Ultra-Wide Tunable Bandgap
,”
Sci. Rep.
,
8
(
1
), p.
2262
. 10.1038/s41598-018-19963-1
12.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2016
, “
On the Mechanism of Bandgap Formation in Locally Resonant Finite Elastic Metamaterials
,”
J. Appl. Phys.
,
120
(
13
), p.
134501
. 10.1063/1.4963648
13.
Celli
,
P.
, and
Gonella
,
S.
,
2014
, “
Laser-Enabled Experimental Wavefield Reconstruction in Two-Dimensional Phononic Crystals
,”
J. Sound Vib.
,
333
(
1
), pp.
114
123
. 10.1016/J.JSV.2013.09.001
14.
Assouar
,
B. M.
,
Senesi
,
M.
,
Oudich
,
M.
,
Ruzzene
,
M.
, and
Hou
,
Z.
,
2012
, “
Broadband Plate-Type Acoustic Metamaterial for Low-Frequency Sound Attenuation
,”
Appl. Phys. Lett.
,
101
(
17
), p.
173505
. 10.1063/1.4764072
15.
Taniker
,
S.
, and
Yilmaz
,
C.
,
2015
, “
Design, Analysis and Experimental Investigation of Three-Dimensional Structures With Inertial Amplification Induced Vibration Stop Bands
,”
Int. J. Solids Struct.
,
72
, pp.
88
97
. 10.1016/J.IJSOLSTR.2015.07.013
16.
Schaeffer
,
M.
,
Trainiti
,
G.
, and
Ruzzene
,
M.
,
2017
, “
Optical Measurement of In-Plane Waves in Mechanical Metamaterials Through Digital Image Correlation
,”
Sci. Rep.
,
7
, p.
42437
. 10.1038/srep42437
17.
Al Ba’ba’
,
H.
,
Attarzadeh
,
M. A.
, and
Nouh
,
M.
,
2018
, “
Experimental Evaluation of Structural Intensity in Two-Dimensional Plate-Type Locally Resonant Elastic Metamaterials
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041005
. 10.1115/1.4039042
18.
Ma
,
G.
,
Fu
,
C.
,
Wang
,
G.
,
Del Hougne
,
P.
,
Christensen
,
J.
,
Lai
,
Y.
, and
Sheng
,
P.
,
2016
, “
Polarization Bandgaps and Fluid-Like Elasticity in Fully Solid Elastic Metamaterials
,”
Nat. Commun.
,
7
, p.
13536
. 10.1038/ncomms13536
19.
Hobeck
,
J. D.
,
Laurent
,
C. M. V.
, and
Inman
,
D. J.
,
2015
, “
3D Printing of Metastructures for Passive Broadband Vibration Suppression
,”
20th International Conference on Composite Materials
,
Copenhagen, Denmark
,
July 19–24
.
20.
Matlack
,
K. H.
,
Bauhofer
,
A.
,
Krödel
,
S.
,
Palermo
,
A.
, and
Daraio
,
C.
,
2016
, “
Composite 3D-Printed Metastructures for Low-Frequency and Broadband Vibration Absorption
,”
Proc. Natl. Acad. Sci.
,
113
(
30
), pp.
8386
8390
. 10.1073/pnas.1600171113
21.
D’Alessandro
,
L.
,
Belloni
,
E.
,
Ardito
,
R.
,
Braghin
,
F.
, and
Corigliano
,
A.
,
2017
, “
Mechanical Low-Frequency Filter via Modes Separation in 3D Periodic Structures
,”
Appl. Phys. Lett.
,
111
(
23
), p.
231902
. 10.1063/1.4995554
22.
D’Alessandro
,
L.
,
Belloni
,
E.
,
Ardito
,
R.
,
Corigliano
,
A.
, and
Braghin
,
F.
,
2016
, “
Modeling and Experimental Verification of an Ultra-Wide Bandgap in 3D Phononic Crystal
,”
Appl. Phys. Lett.
,
109
(
22
), p.
221907
. 10.1063/1.4971290
23.
Reynolds
,
P.
, and
Pavic
,
A.
,
2000
, “
Impulse Hammer Versus Shaker Excitation for the Modal Testing of Building Floors
,”
Exp. Tech.
,
24
(
3
), pp.
39
44
. 10.1111/j.1747-1567.2000.tb00911.x
24.
Frazier
,
M. J.
, and
Hussein
,
M. I.
,
2015
, “
Viscous-to-Viscoelastic Transition in Phononic Crystal and Metamaterial Band Structures
,”
J. Acoust. Soc. Am.
,
138
(
5
), pp.
3169
3180
. 10.1121/1.4934845
25.
Frazier
,
M. J.
, and
Hussein
,
M. I.
,
2016
, “
Generalized Bloch’s Theorem for Viscous Metamaterials: Dispersion and Effective Properties Based on Frequencies and Wavenumbers That Are Simultaneously Complex
,”
Comptes Rendus Phys.
,
17
(
5
), pp.
565
577
. 10.1016/j.crhy.2016.02.009
26.
Barnhart
,
M. V.
,
Xu
,
X.
,
Chen
,
Y.
,
Zhang
,
S.
,
Song
,
J.
, and
Huang
,
G.
,
2019
, “
Experimental Demonstration of a Dissipative Multi-Resonator Metamaterial for Broadband Elastic Wave Attenuation
,”
J. Sound Vib.
,
438
, pp.
1
12
. 10.1016/J.JSV.2018.08.035
27.
Ozkaya
,
E.
, and
Yilmaz
,
C.
,
2017
, “
Effect of Eddy Current Damping on Phononic Band Gaps Generated by Locally Resonant Periodic Structures
,”
J. Sound Vib.
,
389
, pp.
250
265
. 10.1016/j.jsv.2016.11.027
28.
Arretche
,
I.
, and
Matlack
,
K. H.
,
2018
, “
On the Interrelationship Between Static and Vibration Mitigation Properties of Architected Metastructures
,”
Front. Mater.
,
5
, p.
68
. 10.3389/fmats.2018.00068
29.
Zhang
,
S.
,
Whittow
,
W.
, and
Vardaxoglou
,
J. C.
,
2017
, “
Additively Manufactured Artificial Materials With Metallic Meta-Atoms
,”
IET Microw. Anten. Propag.
,
11
(
14
), pp.
1955
1961
. 10.1049/iet-map.2016.0952
30.
Bendat
,
J. S.
, and
Piersol
,
A. G.
,
2010
,
Random Data: Analysis and Measurement Procedures
,
4th ed.
,
Wiley
,
Hoboken, NJ
.
31.
Formlabs
, “
An Introduction to Post-Curing SLA 3D Prints
,” https://formlabs.com/blog/introduction-post-curing-sla-3d-prints/, Accessed March 18, 2019.
32.
Formlabs
, “
Materials Data Sheet Photopolymer Resin for Form 1+ and Form 2
,” https://formlabs.com/media/upload/XL-DataSheet.pdf, Accessed March 15, 2019.
33.
ASTM International
,
2017
, “
Standard Test Method for Measuring Vibration-Damping Properties of Materials
,”
ASTM International
,
West Conshohocken, PA
, ASTM Standard E756.
34.
Liu
,
M. L.
,
Reichl
,
K. K.
, and
Inman
,
D. J.
,
2018
, “Complex Modulus Variation by Manipulation of Mechanical Test Method and Print Direction,”
Mechanics of Additive and Advanced Manufacturing
, Vol.
5
,
J.
Wang
,
B.
Antoun
,
E.
Brown
,
W.
Chen
,
I.
Chasiotis
,
E.
Huskins-Retzlaff
,
S.
Kramer
, and
P. R.
Thakre
, eds.,
Springer
,
Cham, Switzerland
, pp.
5
11
.
35.
Meade
,
M. L.
,
1983
,
Lock-in Amplifiers: Principles and Applications
,
P. Peregrinus on Behalf of the Institution of Electrical Engineers
,
London
.
36.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
. 10.1109/TAU.1967.1161901
37.
Khalil
,
H.
,
Kim
,
D.
,
Nam
,
J.
, and
Park
,
K.
,
2016
, “
Accuracy and Noise Analyses of 3D Vibration Measurements Using Laser Doppler Vibrometer
,”
Measurement
,
94
, pp.
883
892
. 10.1016/j.measurement.2016.09.003
38.
He
,
J.
, and
Fu
,
Z.-F.
,
2001
,
Modal Analysis
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
123
139
. 10.1016/B978-0-7506-5079-3.X5000-1
39.
Lai
,
Y.
,
Wu
,
Y.
,
Sheng
,
P.
, and
Zhang
,
Z.-Q.
,
2011
, “
Hybrid Elastic Solids
,”
Nat. Mater.
,
10
(
8
), pp.
620
624
. 10.1038/nmat3043
40.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
. 10.1115/1.4026911
41.
Zhang
,
Q.
,
Zhang
,
K.
, and
Hu
,
G.
,
2018
, “
Tunable Fluid-Solid Metamaterials for Manipulation of Elastic Wave Propagation in Broad Frequency Range
,”
Appl. Phys. Lett.
,
112
(
22
), p.
221906
. 10.1063/1.5023307
42.
Taniker
,
S.
, and
Yilmaz
,
C.
,
2013
, “
Phononic Gaps Induced by Inertial Amplification in BCC and FCC Lattices
,”
Phys. Lett. A
,
377
(
31–33
), pp.
1930
1936
. 10.1016/j.physleta.2013.05.022
You do not currently have access to this content.