Abstract

The present study is concerned with the deformation response of an architectured material system, i.e., a 2D-material system created by the topological interlocking assembly of polyhedra. Following the analogy of granular crystals, the internal load transfer is considered along well-defined force networks, and internal equivalent truss structures are used to describe the deformation response. Closed-form relationships for stiffness, strength, and toughness of the topologically interlocked material system are presented. The model is validated relative to direct numerical simulation results. The topologically interlocked material system characteristics are compared with those of monolithic plates. The architectured material system outperforms equivalent size monolithic plates in terms of toughness for nearly all possible ratios of modulus to the strength of the material used to make the building blocks and plate, respectively. In addition, topologically interlocked material systems are shown to provide better strength characteristics than a monolithic system for low strength solids.

References

References
1.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton, FL
.
2.
Dyskin
,
A. V.
,
Estrin
,
Y.
,
Kanel-Belov
,
A. J.
, and
Pasternak
,
E.
,
2001
, “
Toughening by Fragmentation—How Topology Helps
,”
Adv. Eng. Mat.
,
3
(
11
), pp.
885
888
. 10.1002/1527-2648(200111)3:11<885::AID-ADEM885>3.0.CO;2-P
3.
Ashby
,
M. F.
, and
Bréchet
,
Y. J. M.
,
2003
, “
Designing Hybrid Materials
,”
Acta Mater.
,
51
(
19
), pp.
5801
5821
. 10.1016/S1359-6454(03)00441-5
4.
Dyskin
,
A. V.
,
Estrin
,
Y.
,
Kanel-Belov
,
A. J.
, and
Pasternak
,
E.
,
2003
, “
A New Principle in Design of Composite Materials: Reinforcement by Interlocked Elements
,”
Compos. Sci. Technol.
,
63
(
3–4
), pp.
483
491
. 10.1016/S0266-3538(02)00228-2
5.
Siegmund
,
T.
,
Barthelat
,
F.
,
Cipra
,
R.
,
Habtour
,
E.
, and
Riddick
,
J.
,
2016
, “
Manufacture and Mechanics of Topologically Interlocked Material Assemblies
,”
ASME Appl. Mech. Rev.
,
68
(
4
), p.
040803
. 10.1115/1.4033967
6.
Dugue
,
M.
,
Fivel
,
M.
,
Brechet
,
Y.
, and
Dendievel
,
R.
,
2013
, “
Indentation of Interlocked Assemblies: 3D Discrete Simulations and Experiments
,”
Comp. Mat. Sci.
,
79
, pp.
591
598
. dx.doi.org/10.1016/j.commatsci.2013.07.014
7.
Khandelwal
,
S.
,
Siegmund
,
T.
,
Cipra
,
R. J.
, and
Bolton
,
J. S.
,
2012
, “
Transverse Loading of Cellular Topologically Interlocked Materials
,”
Int. J. Solids Struct.
,
49
(
18
), pp.
2394
2403
. 10.1016/j.ijsolstr.2012.04.035
8.
Dyskin
,
A. V.
,
Pasternak
,
E.
, and
Estrin
,
Y.
,
2012
, “
Mortarless Structures Based on Topological Interlocking
,”
Front. Struct. Civ. Eng.
,
6
(
2
), pp.
188
197
. 10.1007/s11709-012-0156-8
9.
Mather
,
A.
,
Cipra
,
R.
, and
Siegmund
,
T.
,
2012
, “
Structural Integrity During Remanufacture of a Topologically Interlocked Material
,”
Int. J. Struct. Integ.
,
3
(
1
), pp.
61
78
. 10.1108/17579861211210009
10.
Khandelwal
,
S.
,
Siegmund
,
T.
,
Cipra
,
R. J.
, and
Bolton
,
J. S.
,
2014
, “
Scaling of the Elastic Behavior of Two-Dimensional Topologically Interlocked Materials Under Transverse Loading
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031011
. 10.1115/1.4024907
11.
Brocato
,
M.
,
2018
, “
Continuum Mechanics—A Continuum Model of Interlocking Structural Systems
,”
Rend. Lincei Mat. Appl.
,
29
(
2018
), pp.
63
83
. 10.4171/rlm/793
12.
Mirkhalaf
,
M.
,
Zhou
,
T.
, and
Barthelat
,
F.
,
2018
, “
Simultaneous Improvements of Strength and Toughness in Topologically Interlocked Ceramics
,”
PNAS
,
37
(
115
), pp.
9128
9133
. 10.1073/pnas.1807272115
13.
Conway
,
J. H.
, and
Torquato
,
S.
,
2006
, “
Packing, Tiling, and Covering With Tetrahedra
,”
PNAS
,
103
(
28
), pp.
10612
10617
. 10.1073/pnas.0601389103
14.
Daniels
,
K. E.
,
Kollmer
,
J. E.
, and
Puckett
,
J. G.
,
2017
, “
Photoelastic Force Measurements in Granular Materials
,”
Rev. Sci. Instr.
,
88
(
5
), p.
051808
. 10.1063/1.4983049
15.
Feng
,
Y.
,
Siegmund
,
T.
,
Habtour
,
E.
, and
Riddick
,
J.
,
2015
, “
Impact Mechanics of Topologically Interlocked Material Assemblies
,”
Int. J. Impact Eng.
,
75
(
1
), pp.
140
149
. 10.1016/j.ijimpeng.2014.08.003
16.
Young
,
W. C.
,
Budynas
,
R. G.
, and
Sadegh
,
A. M.
,
2002
,
Roark’s Formulas for Stress and Strain
, Vol.
7
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.