Abstract

As a type of architectured material, knitted textiles exhibit global mechanical behavior which is affected by their microstructure defined at the scale at which yarns are arranged topologically given the type of textile manufactured. To relate local geometrical, interfacial, material, kinematic and kinetic properties to global mechanical behavior, a first-order, two-scale homogenization scheme was developed and applied in this investigation. In this approach, the equivalent stress at the far field and the consistent material stiffness are explicitly derived from the microstructure. In addition, the macrofield is linked to the microstructural properties by a user subroutine which can compute stresses and stiffness in a looped finite element (FE) code. This multiscale homogenization scheme is computationally efficient and capable of predicting the mechanical behavior at the macroscopic level while accounting directly for the deformation-induced evolution of the underlying microstructure.

References

References
1.
Bedeloglu
,
A. C.
,
Koeppe
,
R.
,
Demir
,
A.
,
Bozkurt
,
Y.
, and
Sariciftci
,
N. S.
,
2010
, “
Development of Energy Generating Photovoltaic Textile Structures for Smart Applications
,”
Fibers Polym.
,
11
(
3
), pp.
378
383
. 10.1007/s12221-010-0378-0
2.
Lee
,
S.
,
Lee
,
Y.
,
Park
,
J.
, and
Choi
,
D.
,
2014
, “
Stitchable Organic Photovoltaic Cells With Textile Electrodes
,”
Nano Energy
,
9
, pp.
88
93
. 10.1016/j.nanoen.2014.06.017
3.
Carpi
,
F.
, and
Rossi
,
D. D.
,
2005
, “
Electroactive Polymer-Based Devices for E-Textiles in Biomedicine
,”
IEEE Trans. Inf. Technol. Biomed.
,
9
(
3
), pp.
295
318
. 10.1109/TITB.2005.854514
4.
Shim
,
B. S.
,
Chen
,
W.
,
Doty
,
C.
,
Xu
,
C.
, and
Kotov
,
N. A.
,
2008
, “
Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring Made by Carbon Nanotube Coating With Polyelectrolytes
,”
Nano Lett.
,
8
(
12
), pp.
4151
4157
. 10.1021/nl801495p
5.
Amjadi
,
M.
,
Kyung
,
K.-U.
,
Park
,
I.
, and
Sitti
,
M.
,
2016
, “
Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review
,”
Adv. Funct. Mater.
,
26
(
11
), pp.
1678
1698
. 10.1002/adfm.201504755
6.
Juan
,
X.
,
Hairu
,
L.
, and
Menghe
,
M.
,
2016
, “
High Sensitivity Knitted Fabric Strain Sensors
,”
Smart Mater. Struct.
,
25
(
10
), p.
105008
. 10.1088/0964-1726/25/10/105008
7.
Komeili
,
M.
, and
Milani
,
A.
,
2012
, “
The Effect of Meso-Level Uncertainties on the Mechanical Response of Woven Fabric Composites Under Axial Loading
,”
Comput. Struct.
,
90–91
, pp.
163
171
. 10.1016/j.compstruc.2011.09.001
8.
Liu
,
D.
,
Christe
,
D.
,
Shakibajahromi
,
B.
,
Knittel
,
C.
,
Castaneda
,
N.
,
Breen
,
D.
,
Dion
,
G.
, and
Kontsos
,
A.
,
2017
, “
On the Role of Material Architecture in the Mechanical Behavior of Knitted Textiles
,”
Int. J. Solids Struct.
,
109
, pp.
101
111
. 10.1016/j.ijsolstr.2017.01.011
9.
McKee
,
P. J.
,
Sokolow
,
A. C.
,
Yu
,
J. H.
,
Long
,
L. L.
, and
Wetzel
,
E. D.
,
2017
, “
Finite Element Simulation of Ballistic Impact on Single Jersey Knit Fabric
,”
Compos. Struct.
,
162
(
Suppl. C
), pp.
98
107
. 10.1016/j.compstruct.2016.11.086
10.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T.
, and
Cheeseman
,
B.
,
2005
, “
Modeling the Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric
,”
Compos. Struct.
,
68
(
3
), pp.
331
337
. 10.1016/j.compstruct.2004.03.026
11.
Rao
,
M.
,
Duan
,
Y.
,
Keefe
,
M.
,
Powers
,
B.
, and
Bogetti
,
T.
,
2009
, “
Modeling the Effects of Yarn Material Properties and Friction on the Ballistic Impact of a Plain-Weave Fabric
,”
Compos. Struct.
,
89
(
4
), pp.
556
566
. 10.1016/j.compstruct.2008.11.012
12.
Duan
,
Y.
,
Keefe
,
M.
,
Bogetti
,
T.
,
Cheeseman
,
B.
, and
Powers
,
B.
,
2006
, “
A Numerical Investigation of the Influence of Friction on Energy Absorption by a High-Strength Fabric Subjected to Ballistic Impact
,”
Int. J. Impact Eng.
,
32
(
8
), pp.
1299
1312
. 10.1016/j.ijimpeng.2004.11.005
13.
Liu
,
D.
,
Koric
,
S.
, and
Kontsos
,
A.
,
2018
, “
Parallelized Finite Element Analysis of Knitted Textile Mechanical Behavior
,”
ASME J. Eng. Mater. Technol.
,
141
(
2
), p.
021008
. 10.1115/1.4041869
14.
Liu
,
D.
,
Shakibajahromi
,
B.
,
Dion
,
G.
,
Breen
,
D.
, and
Kontsos
,
A.
,
2018
, “
A Computational Approach to Model Interfacial Effects on the Mechanical Behavior of Knitted Textiles
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041007
. 10.1115/1.4039046
15.
Samadi
,
R.
, and
Robitaille
,
F.
,
2014
, “
Particle-Based Modeling of the Compaction of Fiber Yarns and Woven Textiles
,”
Text. Res. J.
,
84
(
11
), pp.
1159
1173
. 10.1177/0040517512470200
16.
Wang
,
Y.
, and
Sun
,
X.
,
2001
, “
Digital-Element Simulation of Textile Processes
,”
Compos. Sci. Technol.
,
61
(
2
), pp.
311
319
. 10.1016/S0266-3538(00)00223-2
17.
Nocent
,
O.
,
Nourrit
,
J.-M.
, and
Rémion
,
Y.
,
Towards Mechanical Level of Detail for Knitwear Simulation
.
Winter School in Computer Graphics and Visualization 2001 (WSCG2001)
, At
Plzen
,
Feb. 5–9
, pp.
252
259
.
18.
Nadler
,
B.
,
Papadopoulos
,
P.
, and
Steigmann
,
D. J.
,
2006
, “
Multiscale Constitutive Modeling and Numerical Simulation of Fabric Material
,”
Int. J. Solids Struct.
,
43
(
2
), pp.
206
221
. 10.1016/j.ijsolstr.2005.05.020
19.
Yeoman
,
M. S.
,
Reddy
,
D.
,
Bowles
,
H. C.
,
Bezuidenhout
,
D.
,
Zilla
,
P.
, and
Franz
,
T.
,
2010
, “
A Constitutive Model for the Warp-Weft Coupled Non-Linear Behavior of Knitted Biomedical Textiles
,”
Biomaterials
,
31
(
32
), pp.
8484
8493
. 10.1016/j.biomaterials.2010.07.033
20.
Carvelli
,
V.
,
Corazza
,
C.
, and
Poggi
,
C.
,
2008
, “
Mechanical Modelling of Monofilament Technical Textiles
,”
Comput. Mater. Sci.
,
42
(
4
), pp.
679
691
. 10.1016/j.commatsci.2007.10.003
21.
Fillep
,
S.
,
Mergheim
,
J.
, and
Steinmann
,
P.
,
2017
, “
Towards an Efficient Two-Scale Approach to Model Technical Textiles
,”
Comput. Mech.
,
59
(
3
), pp.
385
401
. 10.1007/s00466-016-1354-3
22.
Vassiliadis
,
S. G.
,
Kallivretaki
,
A. E.
, and
Provatidis
,
C. G.
,
2007
, “
Mechanical Simulation of the Plain Weft Knitted Fabrics
,”
Int. J. Clothing Sci. Technol.
,
19
(
2
), pp.
109
130
. 10.1108/09556220710725711
23.
Lin
,
H.
,
Clifford
,
M. J.
,
Long
,
A. C.
, and
Sherburn
,
M.
,
2009
, “
Finite Element Modelling of Fabric Shear
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
1
), p.
015008
. 10.1088/0965-0393/17/1/015008
24.
Gasser
,
A.
,
Boisse
,
P.
, and
Hanklar
,
S.
,
2000
, “
Mechanical Behaviour of Dry Fabric Reinforcements. 3D Simulations Versus Biaxial Tests
,”
Comput. Mater. Sci.
,
17
(
1
), pp.
7
20
. 10.1016/S0927-0256(99)00086-5
25.
Dinh
,
T. D.
,
Weeger
,
O.
,
Kaijima
,
S.
, and
Yeung
,
S. K.
,
2018
, “
Prediction of Mechanical Properties of Knitted Fabrics Under Tensile and Shear Loading: Mesoscale Analysis Using Representative Unit Cells and Its Validation
,”
Compos. Part B: Eng.
,
148
, pp.
81
92
. 10.1016/j.compositesb.2018.04.052
26.
Geers
,
M.
,
Coenen
,
E.
, and
Kouznetsova
,
V.
,
2007
, “
Multi-Scale Computational Homogenization of Structured Thin Sheets
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
4
), p.
S393
. 10.1088/0965-0393/15/4/S06
27.
Coenen
,
E.
,
Kouznetsova
,
V. G.
, and
Geers
,
M. G. D.
,
2010
, “
Computational Homogenization for Heterogeneous Thin Sheets
,”
Int. J. Numer. Methods Eng.
,
83
(
8–9
), pp.
1180
1205
. 10.1002/nme.2833
28.
Fillep
,
S.
,
Mergheim
,
J.
, and
Steinmann
,
P.
,
2013
, “
Computational Modelling and Homogenization of Technical Textiles
,”
Eng. Struct.
,
50
, pp.
68
73
. 10.1016/j.engstruct.2013.01.025
29.
Green
,
S. D.
,
Matveev
,
M. Y.
,
Long
,
A. C.
,
Ivanov
,
D.
, and
Hallett
,
S. R.
,
2014
, “
Mechanical Modelling of 3D Woven Composites Considering Realistic Unit Cell Geometry
,”
Compos. Struct.
,
118
, pp.
284
293
. 10.1016/j.compstruct.2014.07.005
30.
Fillep
,
S.
,
Mergheim
,
J.
, and
Steinmann
,
P.
,
2015
, “
Computational Homogenization of Rope-Like Technical Textiles
,”
Comput. Mech.
,
55
(
3
), pp.
577
590
. 10.1007/s00466-015-1124-7
31.
Rahali
,
Y.
,
Goda
,
I.
, and
Ganghoffer
,
J. F.
,
2016
, “
Numerical Identification of Classical and Nonclassical Moduli of 3D Woven Textiles and Analysis of Scale Effects
,”
Compos. Struct.
,
135
, pp.
122
139
. 10.1016/j.compstruct.2015.09.023
32.
Hill
,
R.
,
1965
, “
Continuum Micro-Mechanics of Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
,
13
(
2
), pp.
89
101
. 10.1016/0022-5096(65)90023-2
33.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
(
5
), pp.
357
372
. 10.1016/0022-5096(63)90036-X
34.
Suquet
,
P.
,
1987
, “
Elements of Homogenization for Inelastic Solid Mechanics
,”
Homogenization Tech. Compos. Media
,
272
, pp.
193
278
. 10.1007/3-540-17616-0_15
35.
Resnick
,
A.
,
2012
, “Continuum Mechanics and Thermodynamics: From Fundamental Concepts to Governing Equations,”
Contemporary Physics
,
E. B.
Tadmor
,
R. E.
Miller
, and
R. S.
Elliott
, eds.,
Cambridge University Press
,
Cambridge
, Vol.
53
, pp.
445
456
.
36.
Bianchetti
,
R.
,
Hamstad
,
M.
, and
Mukherjee
,
A.
,
1976
, “
Origin of Burst-Type Acoustic Emission in Unflawed 7075-T6 Aluminum
,”
J. Test. Eval.
,
4
(
5
), pp.
313
318
. 10.1520/JTE10518J
37.
ABAQUS
, Version 6.13, 2013,
User’s Manual
,
Dassault Systems
,
Pawtucket, RI
.
You do not currently have access to this content.