Abstract

The improvement of fracture strength by insertion of thin, soft interlayers is a strategy observed in biological materials such as deep-see sponges. The basic mechanism is a reduction of the crack driving force due to the spatial variation of yield strength and/or Young's modulus. The application of this “material inhomogeneity effect” is demonstrated in this paper. The effectiveness of various interlayer configurations is investigated by numerical simulations under application of the configurational force concept. Laminated composites, made of high-strength tool steels as matrix materials and low-strength deep-drawing steel as interlayer material, were manufactured by hot press bonding. The number of interlayers and the interlayer thickness were varied. Fracture mechanics experiments show crack arrest in the first interlayer and significant improvements in fracture toughness, even without the occurrence of other toughening mechanisms, such as interface delamination. The application of the material inhomogeneity effect for different types of matrix materials is discussed.

References

References
1.
Anderson
,
T. L.
,
1995
,
Fracture Mechanics
,
CRC Press
,
Boca Raton, FL
.
2.
Kolednik
,
O.
,
1993
, “
A Simple Model to Explain the Geometry Dependence of the J−Δa-Curves
,”
Int. J. Fract.
,
63
(
3
), pp.
263
274
. 10.1007/BF00012472
3.
Turner
,
C. E.
, and
Kolednik
,
O.
,
1994
, “
A Micro and Macro Approach to the Energy Dissipation Rate Model of Stable Ductile Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
,
17
(
9
), pp.
1089
1107
. 10.1111/j.1460-2695.1994.tb00837.x
4.
Irwin
,
G. R.
,
1961
, “
Plastic Zone Near a Crack and Fracture Toughness
,”
Sagamore Research Conference Proceedings
,
Racquette Lake, NY
, pp.
463
478
.
5.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
6.
Griffith
,
A. A.
,
1920
, “
The Phenomena of Rupture and Flow in Solids
,”
Phil. Trans. A
,
221
(
582–593
), pp.
163
198
. 10.1098/rsta.1921.0006
7.
Garvie
,
R. C.
,
Hannink
,
R. H.
, and
Pascoe
,
R. T.
,
1975
, “
Ceramic Steel?
Nature
,
258
(
703–704
), p.
703
. 10.1038/258703a0
8.
Zackay
,
V. F.
,
Parker
,
E. R.
,
Fahr
,
D.
, and
Busch
,
R.
,
1967
, “
The Enhancement of Ductility in High-Strength Steels
,”
Trans. ASM
,
60
, pp.
252
257
.
9.
Evans
,
A. G.
,
1989
, “
The New High Toughness Ceramics
,”
ASTM STP 907, American Society for Testing and Materials
,
Dallas, TX
,
Oct. 24–25, 1984
,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
267
291
.
10.
Marshall
,
D. B.
,
Cox
,
B. N.
, and
Evans
,
A. G.
,
1985
, “
The Mechanics of Matrix Cracking in Brittle-Matrix Fibre Composites
,”
Acta Metall.
,
23
(
11
), pp.
2013
2022
. 10.1016/0001-6160(85)90124-5
11.
Faber
,
K. T.
, and
Evans
,
A. G.
,
1984
, “
Crack Growth Resistance of Microcracking Brittle Materials
,”
J. Amer. Ceram. Soc.
,
67
(
4
), pp.
255
260
. 10.1111/j.1151-2916.1984.tb18842.x
12.
Cook
,
J.
, and
Gordon
,
J. E.
,
1964
, “
A Mechanism for the Control of Crack Propagation in All-Brittle Systems
,”
Proc. Roy. Soc. Lond. Math. Phys. Sci.
,
282
(
1391
), pp.
508
520
. 10.1098/rspa.1964.0248
13.
Embury
,
J. D.
,
Petch
,
N. J.
,
Wraith
,
A. E.
, and
Wright
,
E. S.
,
1967
, “
The Fracture of Mild Steel Laminates
,”
Trans. Metall. Soc. AIME
,
239
, pp.
114
118
.
14.
Faber
,
K. T.
, and
Evans
,
A. G.
,
1983
, “
Crack Deflection Processes—I. Theory
,”
Acta Metall.
,
31
(
4
), pp.
565
576
. 10.1016/0001-6160(83)90046-9
15.
Joyce
,
M. R.
,
Reed
,
P. A. S.
, and
Syngellakis
,
S.
,
2003
, “
Numerical Modelling of Crack Shielding and Deflection in a Multi-Layered Material System
,”
Mater. Sci. Eng. A
,
342
(
1–2
), pp.
11
22
. 10.1016/S0921-5093(02)00279-4
16.
Parker
,
E. R.
, and
Zackay
,
V. F.
,
1973
, “
Enhancement of Fracture Toughness in High Strength Steel by Microstructural Control
,”
Eng. Fract. Mech.
,
5
(
1
), pp.
147
162
. 10.1016/0013-7944(73)90013-1
17.
Sglavo
,
V. M.
,
Paternoster
,
M.
, and
Bertoldi
,
M.
,
2005
, “
Tailored Residual Stresses in High Reliability Alumina-Mullite Ceramic Laminates
,”
J. Am. Ceram. Soc.
,
88
(
10
), pp.
2826
2832
. 10.1111/j.1551-2916.2005.00479.x
18.
Simha
,
N. K.
,
Fischer
,
F. D.
,
Kolednik
,
O.
, and
Chen
,
C. R.
,
2003
, “
Inhomogeneity Effects on the Crack Driving Force in Elastic and Elastic-Plastic Materials
,”
J. Mech. Phys. Solids
,
51
(
1
), pp.
209
240
. 10.1016/S0022-5096(02)00025-X
19.
Simha
,
N. K.
,
Fischer
,
F. D.
,
Kolednik
,
O.
,
Predan
,
J.
, and
Shan
,
G. X.
,
2005
, “
Crack Tip Shielding or Anti-Shielding Due to Smooth and Discontinuous Material Inhomogeneities
,”
Int. J. Fract.
,
135
(
1–4
), pp.
73
93
. 10.1007/s10704-005-3944-5
20.
Kolednik
,
O.
,
2000
, “
The Yield Stress Gradient Effect in Inhomogeneous Materials
,”
Int. J. Solids Struct.
,
37
(
5
), pp.
781
808
. 10.1016/S0020-7683(99)00060-8
21.
Maugin
,
M. A.
,
1999
,
The Thermomechanics of Nonlinear Irreversible Behaviors
,
World Scientific Inc.
,
London
.
22.
Gurtin
,
M. E.
,
2000
,
Configurational Forces as Basic Concepts of Continuum Physics
,
Springer
,
New York
.
23.
Kienzler
,
R.
, and
Herrmann
,
G.
,
2000
,
Mechanics in Material Space
,
Springer
,
Berlin
.
24.
Kolednik
,
O.
,
Predan
,
J.
, and
Fischer
,
F. D.
,
2010
, “
Reprint of ‘Cracks in Inhomogeneous Materials: Comprehensive Assessment Using the Configurational Forces Concept’
,”
Eng. Fract. Mech.
,
77
(
18
), pp.
3611
3624
. 10.1016/j.engfracmech.2010.10.010
25.
Simha
,
N. K.
,
Kolednik
,
O.
, and
Fischer
,
F. D.
,
2005
, “
Material Force Models for Cracks—Influences of Eigenstrains, Thermal Strains & Residual Stresses
,”
11th International Conference on Fracture
,
A.
Carpinteri
, ed.,
Curran Associates Inc.
,
Red Hook
, Paper No. 5329.
26.
Rakin
,
M.
,
Kolednik
,
O.
,
Medjo
,
B.
,
Simha
,
N. K.
, and
Fischer
,
F. D.
,
2009
, “
A Case Study on the Effect of Thermal Residual Stresses on the Crack-Driving Force in Linear-Elastic Bimaterials
,”
Int. J. Mech. Sci.
,
51
(
7
), pp.
531
540
. 10.1016/j.ijmecsci.2009.05.006
27.
Sistaninia
,
M.
, and
Kolednik
,
O.
,
2014
, “
Effect of a Single Soft Interlayer on the Crack Driving Force
,”
Eng. Fract. Mech.
,
130
, pp.
21
41
. 10.1016/j.engfracmech.2014.02.026
28.
Parks
,
D. M.
,
1977
, “
The Virtual Crack Extension Method for Nonlinear Material Behavior
,”
Comput. Meth. Appl. Mech. Eng.
,
12
(
3
), pp.
353
364
. 10.1016/0045-7825(77)90023-8
29.
Sistaninia
,
M.
, and
Kolednik
,
O.
,
2017
, “
Improving Strength and Toughness of Materials by Utilizing Spatial Variations of the Yield Stress
,”
Acta Mater.
,
122
, pp.
207
219
. 10.1016/j.actamat.2016.09.044
30.
Kolednik
,
O.
,
Predan
,
J.
,
Shan
,
G. X.
,
Simha
,
N. K.
, and
Fischer
,
F. D.
,
2005
, “
On the Fracture Behavior of Inhomogeneous Materials—A Case Study for Elastically Inhomogeneous Bimaterials
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
605
620
. 10.1016/j.ijsolstr.2004.06.064
31.
Sistaninia
,
M.
,
Kasberger
,
R.
, and
Kolednik
,
O.
,
2018
, “
To the Design of Highly Fracture Resistant Composites by the Application of the Yield Stress Inhomogeneity Effect
,”
Comp. Struct.
,
185
, pp.
113
122
. 10.1016/j.compstruct.2017.10.081
32.
Lawn
,
B.
,
1993
,
Fracture of Brittle Solids
,
Cambridge University Press
,
Cambridge, UK
.
33.
Kolednik
,
O.
,
Predan
,
J.
,
Fischer
,
F. D.
, and
Fratzl
,
P.
,
2014
, “
Improvements of Strength and Fracture Resistance by Spatial Material Property Variations
,”
Acta Mater.
,
68
, pp.
279
294
. 10.1016/j.actamat.2014.01.034
34.
Kolednik
,
O.
,
Predan
,
J.
,
Fischer
,
F. D.
, and
Fratzl
,
P.
,
2011
, “
Bioinspired Design Criteria for Damage-Resistant Materials With Periodically Varying Microstructure
,”
Adv. Funct. Mater.
,
21
(
19
), pp.
3634
3641
. 10.1002/adfm.201100443
35.
Wadsworth
,
J.
, and
Lesuer
,
D. R.
,
2000
, “
Ancient and Modern Laminated Composites—From the Great Pyramid of Gizeh to Y2K
,”
Mater. Charact.
,
45
(
4–5
), pp.
289
313
. 10.1016/S1044-5803(00)00077-2
36.
Lesuer
,
D. R.
,
Syn
,
C. K.
,
Sherby
,
O. D.
,
Wadsworth
,
J.
,
Lewandowski
,
J. J.
, and
Hunt
,
W. H.
, Jr.
,
1996
, “
Mechanical Behaviour of Laminated Metal Composites
,”
Int. Mater. Rev.
,
41
(
5
), pp.
169
197
. 10.1179/imr.1996.41.5.169
37.
Pozuelo
,
M.
,
Carreno
,
F.
, and
Ruano
,
O. A.
,
2006
, “
Delamination Effect on the Impact Toughness of an Ultrahigh Carbon–Mild Steel Laminate Composite
,”
Compos. Sci. Technol.
,
66
(
15
), pp.
2671
2676
. 10.1016/j.compscitech.2006.03.018
38.
Zhang
,
J. Y.
,
Liu
,
G.
,
Zhang
,
X.
,
Zhang
,
G. J.
,
Suna
,
J.
, and
Maa
,
E.
,
2010
, “
A Maximum in Ductility and Facture Toughness in Nanostructured Cu/Cr Multilayer Films
,”
Scr. Mater.
,
62
(
6
), pp.
333
336
. 10.1016/j.scriptamat.2009.10.030
39.
Koseki
,
T.
,
Inoue
,
J.
, and
Nambu
,
S.
,
2014
, “
Development of Multilayer Steels for Improved Combinations of High Strength and High Ductility
,”
Mater. Trans.
,
55
(
2
), pp.
227
237
. 10.2320/matertrans.M2013382
40.
Zhang
,
M. D.
,
Hu
,
J.
,
Cao
,
W. Q.
, and
Dong
,
H.
,
2015
, “
Microlaminated Dual Phase Steel Presenting With High Strength and Ultrahigh Toughness
,”
Mater. Sci. Technol.
,
31
(
11
), pp.
1349
1354
. 10.1179/1743284714Y.0000000699
41.
He
,
M. Y.
,
Heredia
,
F. E.
,
Wissuchek
,
D. J.
,
Shaw
,
M. C.
, and
Evans
,
A. G.
,
1993
, “
The Mechanics of Crack Growth in Layered Materials
,”
Acta Metall. Mater.
,
41
(
4
), pp.
1223
1228
. 10.1016/0956-7151(93)90171-N
42.
Spittel
,
M.
, and
Spittel
,
T.
,
2009
, “Steel Symbol/Number: DC04/1.0338 and X210Cr12/1.2080,”
Springer Materials—The Landolt-Börnstein Database
,
H.
Warlimont
, ed.,
Springer
,
Berlin
, pp.
162
167
and 396–401.
43.
Kolednik
,
O.
, and
Stüwe
,
H. P.
,
1985
, “
The Stereophotogrammetric Determination of the Critical Crack Tip Opening Displacement
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
145
155
. 10.1016/0013-7944(85)90061-X
44.
Stampfl
,
J.
,
Scherer
,
S.
,
Gruber
,
M.
, and
Kolednik
,
O.
,
1996
, “
Reconstruction of Surface Topographies by Scanning Electron Microscopy for Application in Fracture Research
,”
Appl. Phys. A
,
63
(
4
), pp.
341
346
. 10.1007/BF01567324
45.
Zechner
,
J.
, and
Kolednik
,
O.
,
2013
, “
Fracture Resistance of Aluminum Multilayer Composites
,”
Eng. Fract. Mech.
,
110
, pp.
489
500
. 10.1016/j.engfracmech.2012.11.007
46.
Weißgraeber
,
P.
,
Leguillon
,
D.
, and
Becker
,
W.
,
2016
, “
A Review of Finite Fracture Mechanics: Crack Initiation at Singular and Non-Singular Stress Raisers
,”
Arch. Appl. Mech.
,
86
(
1–2
), pp.
375
401
. 10.1007/s00419-015-1091-7
47.
Weibull
,
W.
,
1951
, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
,
18
, pp.
293
297
.
48.
Ashby
,
M. F.
, and
Bréchet
,
Y. J. M.
,
2003
, “
Designing Hybrid Materials
,”
Acta Mater.
,
51
(
19
), pp.
5801
5821
. 10.1016/S1359-6454(03)00441-5
49.
Suresh
,
S.
,
Sugimura
,
Y.
, and
Ogawa
,
T.
,
1993
, “
Fatigue Cracking in Materials With Brittle Surface Coatings
,”
Scr. Metall. Mater.
,
29
(
2
), pp.
237
242
. 10.1016/0956-716X(93)90315-J
50.
Chai
,
H.
, and
Josell
,
D.
,
2010
, “
Fracture Behavior of Nano-Layered Coatings Under Tension
,”
Thin Solid Films
,
519
(
1
), pp.
331
336
. 10.1016/j.tsf.2010.07.086
51.
Zhang
,
C.
,
Zhou
,
H.
, and
Liu
,
L.
,
2014
, “
Laminar Fe-Based Amorphous Composite Coatings With Enhanced Bonding Strength and Impact Resistance
,”
Acta Mater.
,
72
, pp.
239
251
. 10.1016/j.actamat.2014.03.047
52.
Daniel
,
R.
,
Meindlhumer
,
M.
,
Zalesak
,
J.
,
Sartory
,
B.
,
Zeilinger
,
A.
,
Mitterer
,
C.
, and
Keckes
,
J.
,
2016
, “
Fracture Toughness Enhancement of Brittle Nanostructured Materials by Spatial Heterogeneity: A Micromechanical Proof for CrN/Cr and TiN/SiOx Multilayers
,”
Mater. Design
,
104
, pp.
227
234
. 10.1016/j.matdes.2016.05.029
53.
Kozic
,
D.
,
Gänser
,
H.-P.
,
Brunner
,
R.
,
Kiener
,
D.
,
Antretter
,
T.
, and
Kolednik
,
O.
,
2018
, “
Crack Arresting Abilities of Thin Metallic Film Stacks Due to the Influence of Material Inhomogeneities
,”
Thin Solid Films
,
668
, pp.
14
22
. 10.1016/j.tsf.2018.10.014
54.
Aizenberg
,
J.
,
Weaver
,
J. C.
,
Thanawala
,
M. S.
,
Sundar
,
V. C.
,
Morse
,
D. E.
, and
Fratzl
,
P.
,
2005
, “
Skeleton of Euplectella sp.: Structural Hierarchy From the Nanoscale to the Macroscale
,”
Science
,
309
(
5732
), pp.
275
278
. 10.1126/science.1112255
55.
Fratzl
,
P.
, and
Weinkamer
,
R.
,
2007
, “
Nature’s Hierarchical Materials
,”
Progr. Mater. Sci.
,
52
(
8
), pp.
1263
1334
. 10.1016/j.pmatsci.2007.06.001
56.
Fratzl
,
P.
,
Gupta
,
H. S.
,
Fischer
,
F. D.
, and
Kolednik
,
O.
,
2007
, “
Hindered Crack Propagation in Materials With Periodically Varying Young’s Modulus—Lessons From Biological Materials
,”
Adv. Mater.
,
19
(
18
), pp.
2657
2661
. 10.1002/adma.200602394
57.
Fratzl
,
P.
,
Kolednik
,
O.
,
Fischer
,
F. D.
, and
Dean
,
M. N.
,
2016
, “
The Mechanics of Tessellations—Bioinspired Strategies for Fracture Resistance
,”
Chem. Soc. Rev.
,
45
(
2
), pp.
252
267
. 10.1039/C5CS00598A
58.
Zechner
,
J.
, and
Kolednik
,
O.
,
2013
, “
Paper Multilayer With a Fracture Toughness of Steel
,”
J. Mater. Sci.
,
48
(
15
), pp.
5180
5187
. 10.1007/s10853-013-7304-y
59.
Dyskin
,
A. V.
,
Estrin
,
Y.
,
Kanel-Belov
,
A. J.
, and
Pasternak
,
E.
,
2001
, “
A New Concept in Design of Materials and Structures: Assemblies of Interlocked Tetrahedron-Shaped Elements
,”
Scr. Mater.
,
44
(
12
), pp.
2689
2694
. 10.1016/S1359-6462(01)00968-X
60.
Siegmund
,
T.
,
Barthelat
,
F.
,
Cipra
,
R.
,
Habtour
,
E.
, and
Riddick
,
J.
,
2016
, “
Manufacture and Mechanics of Topologically Interlocked Material Assemblies
,”
ASME Appl. Mech. Rev.
,
68
(
4
), p.
040803
. 10.1115/1.4033967
61.
Mirkhalaf
,
M.
,
Sunesara
,
A.
,
Asrafi
,
B.
, and
Barthelat
,
F.
,
2019
, “
Toughness by Segmentation: Fabrication, Testing and Micromechanics of Architectured Ceramic Panels for Impact Applications
,”
Int. J. Solids Struct.
,
158
, pp.
52
65
. 10.1016/j.ijsolstr.2018.08.025
62.
Suresh
,
S.
,
Sugimura
,
Y.
, and
Tschegg
,
E. K.
,
1992
, “
The Growth of a Fatigue Crack Approaching a Perpendicularly-Oriented Bimaterial Interface
,”
Scr. Metall. Mater.
,
27
(
9
), pp.
1189
1194
. 10.1016/0956-716X(92)90597-8
63.
Pippan
,
R.
,
Flechsig
,
K.
, and
Riemelmoser
,
F. O.
,
2000
, “
Fatigue Crack Propagation Behavior in the Vicinity of an Interface Between Materials With Different Yield Stresses
,”
Mater. Sci. Eng. A
,
283
(
1-2
), pp.
225
233
. 10.1016/S0921-5093(00)00703-6
64.
Sugimura
,
Y.
,
Lim
,
P. G.
,
Shih
,
C. F.
, and
Suresh
,
S.
,
1995
, “
Fracture Normal to a Bimaterial Interface: Effects of Plasticity on Crack-tip Shielding and Amplification
,”
Acta Metall. Mater.
,
43
(
3
), pp.
1157
1169
. 10.1016/0956-7151(94)00295-S
65.
Kolednik
,
O.
,
Predan
,
J.
,
Gubeljak
,
N.
, and
Fischer
,
F. D.
,
2009
, “
Modeling Fatigue Crack Growth in a Bimaterial Specimen With the Configurational Forces Model
,”
Mater. Sci. Eng. A
,
519
(
1–2
), pp.
172
183
. 10.1016/j.msea.2009.04.059
66.
Kolednik
,
O.
,
Zechner
,
J.
, and
Predan
,
J.
,
2016
, “
Improvement of Fatigue Life by Compliant and Soft Interlayers
,”
Scr. Mater.
,
113
, pp.
1
5
. 10.1016/j.scriptamat.2015.10.021
67.
Mueller
,
R.
,
Kolling
,
S.
, and
Gross
,
D.
,
2002
, “
On Configurational Forces in the Context of the Finite Element Method
,”
Int. J. Numer. Meth. Eng.
,
53
(
7
), pp.
1557
1574
. 10.1002/nme.351
68.
Denzer
,
R.
,
Barth
,
F. J.
, and
Steinmann
,
P.
,
2003
, “
Studies in Elastic Fracture Mechanics Based on the Material Force Method
,”
Int. J. Numer. Meth. Eng.
,
58
(
12
), pp.
1817
1835
. 10.1002/nme.834
69.
Fischer
,
F. D.
,
Simha
,
N. K.
,
Predan
,
J.
,
Schöngrundner
,
R.
, and
Kolednik
,
O.
,
2012
, “
On Configurational Forces at Boundaries in Fracture Mechanics
,”
Int. J. Fract.
,
174
(
1
), pp.
61
74
. 10.1007/s10704-011-9672-0
70.
Simha
,
N. K.
,
Fischer
,
F. D.
,
Shan
,
G. X.
,
Chen
,
C. R.
, and
Kolednik
,
O.
,
2008
, “
J-integral and Crack Driving Force in Elastic-Plastic Materials
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2876
2895
. 10.1016/j.jmps.2008.04.003
71.
Kolednik
,
O.
,
Schöngrundner
,
R.
, and
Fischer
,
F. D.
,
2014
, “
A New Vew on J-Integrals in Elastic-Plastic Materials
,”
Int. J. Fract.
,
187
(
1
), pp.
77
107
. 10.1007/s10704-013-9920-6
72.
Ochensberger
,
W.
, and
Kolednik
,
O.
,
2015
, “
Physically Appropriate Characterization of Fatigue Crack Propagation Rate in Elastic–Plastic Materials Using the J-Integral Concept
,”
Int. J. Fract.
,
192
(
1
), pp.
25
45
. 10.1007/s10704-014-9983-z
73.
Pavlina
,
E. J.
, and
Van Tyne
,
C. J.
,
2008
, “
Correlation of Yield Strength and Tensile Strength With Hardness for Steels
,”
J. Mater. Eng. Perform.
,
17
(
6
), pp.
888
893
. 10.1007/s11665-008-9225-5
74.
Johnson
,
H. H.
,
1965
, “
Calibrating the Electric Potential Method for Studying Slow Crack Growth
,”
Mater. Res. Standards
,
5
, pp.
442
445
.
75.
Cravero
,
S.
, and
Ruggieri
,
C.
,
2007
, “
Estimation Procedure of J-Resistance Curves for SE(T) Fracture Specimens Using Unloading Compliance
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2735
2757
. 10.1016/j.engfracmech.2007.01.012
You do not currently have access to this content.