Abstract

This article summarizes a series of interconnected researches exploring the potential of applying topological interlocking methodologies to the field of architectural design and fabrication. Specifically, it describes two concurrent approaches to design with interlocking units: the first relying on parametric design logics and mass-customized fabrication processes and the second implementing discrete combinatorial processes for both design and fabrication using modular units. We first outline the historical background of combinatorial thinking in architectural computing and describe the emergence of computational design and digital fabrication. We further present the recent evolution of a combinatorial design paradigm, which challenges the acquired parametric design methodologies in computational architecture research. We then present our research in the field of topological interlocking, focusing on a parametric design approach. We further describe implications of a shift from parametric to combinatorial design logics in architecture. Finally, we present the transition of the topological interlocking research from parametric to combinational logics. In these three sections, we describe design and fabrication methodologies for both approaches and evaluate the potentials and limitations of both. We present recent work in the development of software for combinatorial design within caad software, and its first application is to design topological interlocking systems. We conclude by outlining the future research directions and possibilities of integration between parametric and combinatorial processes in design, fabrication, and assembly of interlocking systems.

References

1.
Engel
,
H.
,
1997
,
Structural Systems
,
Verlag Gerd Hatje
,
Ostfildern Ruit
.
2.
von Kleist
,
H.
,
1997
, “Kleist an Wilhelmine von Zenge, 16./18.11.1800,”
Sämtliche Werke und Briefe
,
K.
Müller Salget
, and
S.
Ormanns
, eds.,
Deutscher Klassiker Verlag
,
Frankfurt am Main
, p.
385
.
3.
Evans
,
R.
,
2000
,
The Projective Cast: Architecture and Its Three Geometries
,
MIT Press
,
Cambridge, MA
.
4.
Larsen
,
O. P.
,
2008
,
Reciprocal Frame Architecture
,
Routledge
,
Oxford
.
5.
Wachsmann
,
K.
,
1959
,
Wendepunkt im Bauen
,
Otto Krauskopf Verlag GmbH
,
Wiesbaden
.
6.
Hitchcock
,
H.-R.
, and
Johnson
,
P.
,
1985
,
Der Internationale Stil—1932
,
Vieweg
,
Braunschweig
.
7.
Kolarevic
,
B.
,
2004
,
Architecture in the Digital Age: Design and Manufacturing
,
Taylor & Francis
,
London
.
8.
Schumacher
,
P.
,
2011
,
The Autopoiesis of Architecture, Volume I: A New Framework for Architecture
,
John Wiley & Sons
,
New York
.
9.
Ward
,
J. J. D.
,
2010
, “
Additive Assembly of Digital Materials
,” Doctoral dissertation,
Massachusetts Institute of Technology
,
Cambridge, MA
.
10.
Gershenfeld
,
N.
,
2012
, “
How to Make Almost Anything: The Digital Fabrication Revolution
,”
Foreign Affairs
,
91
(
6
), p.
43
.
11.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
. 10.1002/j.1538-7305.1948.tb01338.x
12.
Gershenfeld
,
N.
,
Gershenfeld
,
A.
, and
Cutcher-Gershenfeld
,
J.
,
2017
,
Designing Reality: How to Survive and Thrive in the Third Digital Revolution
,
Basic Books
,
New York
.
13.
Achten
,
H.
,
2011
, “
Degrees of Interaction
,”
Proceedings of 29th eCAADe Conference
,
T.
Zumancic
,
H.
Achten
,
J.
P. Jaroslav
, and
H.
Dana Matějovská
, eds.,
Ljubljana
, pp.
565
572
.
14.
Morel
,
P.
,
2019
, “
Polyomino. “The Missing Topology Mechanic
”,
Archit. Des.
,
89
(
2
), pp.
14
21
. 10.1002/ad.2407
15.
Reiser
,
J.
, and
Umemoto
,
N.
,
2006
,
Atlas of Novel Tectonics
,
Princeton Architectural Press
,
New York
.
16.
Sanchez
,
J.
,
2016
, “
Combinatorial Design: Non-Parametric Computational Design Strategies
,”
Proceedings of the 36th ACADIA Conference
,
Oct. 27–29
,
ACADIA
,
Ann Arbor, MI
, pp.
44
53
.
17.
Retsin
,
G.
,
2016
, “
Discrete Assembly and Digital Materials
,”
Proceedings of the 34th eCAADe Conference
,
Oulu
,
Aug. 22–26
, pp.
143
151
.
18.
Tessmann
,
O.
,
2012
, “
Topological Interlocking Assemblies
,”
Proceedings of the 30th eCAADe Conference
,
H.
Achten
,
S.
Tibbits
and
C.
Mueller
, eds.,
Prague
,
Sept. 12–14
, pp.
211
219
.
19.
Retsin
,
G.
,
2019
,
Discrete: Reappraising the Digital in Architecture
,
Wiley
,
London
.
20.
Dyskin
,
A. V.
,
Estrin
,
Y.
,
Kanel-belov
,
A. J.
, and
Pasternak
,
E.
,
2001
, “
Toughening by Fragmentation—How Topology Helps
,”
Adv. Eng. Mater.
,
3
(
11
), pp.
885
889
. 10.1002/1527-2648(200111)3:11<885::AID-ADEM885>3.0.CO;2-P
21.
Mirkhalaf
,
M.
,
Zhou
,
T.
, and
Barthelat
,
F.
,
2018
, “
Simultaneous Improvements of Strength and Toughness in Topologically Interlocked Ceramics
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
37
), pp.
9128
9133
. 10.1073/pnas.1807272115
22.
Fallacara
,
G.
, and
Minenna
,
V.
,
2014
,
Stereotomic Design
,
Aracne
,
Verona
.
23.
Bonwetsch
,
T.
,
Gramazio
,
F.
, and
Kohler
,
M.
,
2007
, “
Digitally Fabricating Non-Standardised Brick Walls
,”
ManuBuild—Conference Proceedings
,
Rotterdam
,
Apr. 25–26
, pp.
191
196
.
24.
Rippmann
,
M.
, and
Block
,
P.
,
2011
, “
Digital Stereotomy: Voussoir Geometry for Freeform Masonry-Like Vaults Informed by Structural and Fabrication Constraints
,”
Proceedings of the IABSE-IASS Symposium 2011
,
London, UK
.
25.
Weizmann
,
M.
,
Amir
,
O.
, and
Grobman
,
Y. J.
,
2017
, “
Topological Interlocking in Architecture: A New Design Method and Computational Tool for Designing Building Floors
,”
Int. J. Archit. Comput.
,
15
(
2
), pp.
107
118
. 10.1177/1478077117714913
26.
Ghassaei
,
A. P.
,
2016
, “
Rapid Design and Simulation of Functional Digital Materials
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
27.
Sanchez
,
J.
,
2014
,
ALIVE. Advancements in Adaptive Architecture
,
M.
Kretzer
and
L.
Hovestadt
, eds.,
Birkhaeuser
,
Basel
, pp.
125
128
.
28.
Savov
,
A.
, and
Tessmann
,
O.
,
2017
, “
Introduction to Playable Voxel-Shape Grammars
,”
Proceedings of the 37th ACADIA Conference
,
T.
Nagakura
,
A.
Fioravanti
,
S.
Cursi
,
S.
Elahmar
,
S.
Gargaro
, and
G.
Loffreda
, eds., ACADIA,
Boston, MA
,
Nov. 2–4
, pp.
534
543
.
29.
Rossi
,
A.
, and
Tessmann
,
O.
,
2018
, “
From Voxels to Parts: Hierarchical Discrete Modeling for Design and Assembly
,”
International Conference on Geometry and Graphics
,
Milan
,
Aug. 3–7
,
Springer
,
Cham
, pp.
1001
1012
.
30.
Rossi
,
A.
, and
Tessmann
,
O.
,
2017
, “
Geometry as Assembly
,”
Proceeding of 35th eCAADe Conference
,
A.
Fioravanti
,
G.
Novembri
, and
A.
Trento
, eds.,
Rome
,
Sept. 20–22
, pp.
201
210
.
31.
Klavins
,
E.
,
Ghrist
,
R.
, and
Lipsky
,
D.
,
2004
, “
Graph Grammars for Self Assembling Robotic Systems
,”
IEEE International Conference on Robotics and Automation
,
New Orleans
,
Apr. 24–May 1
,
IEEE
, pp.
5293
5300
.
32.
Michalatos
,
P.
, and
Payne
,
A. O.
,
2016
, “
Monolith: The Biomedical Paradigm and the Inner Complexity of Hierarchical Material Design
,”
Proceedings of the 34th eCAADe Conference
,
A.
Herneoja
,
T.
Österlund
, and
P.
Markkanen
, eds.,
Oulu
,
Aug. 22–26
, pp.
445
454
.
33.
Doubrovski
,
E. L.
,
Tsai
,
E. Y.
,
Dikovsky
,
D.
,
Geraedts
,
J. M.
,
Herr
,
H.
, and
Oxman
,
N.
,
2015
, “
Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing
,”
Comput. Aided Des.
,
60
(
3
), pp.
3
13
. 10.1016/j.cad.2014.05.010
34.
Rossi
,
A.
, and
Tessmann
,
O.
,
2017
, “
Aggregated Structures: Approximating Topology Optimized Material Distribution With Discrete Building Blocks
,”
Proceedings of IASS Annual Symposia
,
Hamburg
,
Sept. 25–28
, pp.
1
10
.
35.
Feringa
,
J.
,
2012
, “
Implicit Fabrication, Fabrication Beyond Craft: The Potential of Turing Completeness in Construction
,”
Proceedings of the 32nd ACADIA Conference
,
J. K.
Johnson
,
M.
Cabrinha
,
J. K.
Johnson
, and
K.
Steinfeld
, eds.,
San Francisco
,
Oct. 18–21
,
ACADIA
, pp.
383
390
.
36.
Carpo
,
M.
,
2011
,
The Alphabet and the Algorithm
,
MIT Press
,
Cambridge, MA
.
37.
Schumacher
,
P.
,
2018
, “
Design as Second Nature
,” https://www.patrikschumacher.com/Texts/Design%20as%20Second%20Nature.html.
38.
Hensel
,
M.
, and
Menges
,
A.
,
2006
,
Morpho-ecologies: Towards Heterogeneous Space in Architectural Design
,
Architectural Association Publications
,
London
.
39.
Oxman
,
N.
,
2010
, “
Structuring Materiality: Design Fabrication of Heterogeneous Materials
,”
Archit. Des.
,
80
(
4
), pp.
78
85
. 10.1002/ad.1110
40.
Rossi
,
A.
, and
Nebuloni
,
A.
,
2018
,
Codice e Progetto
,
Mimesis Edizioni
,
Milan
.
41.
Karatani
,
K.
,
1995
,
Architecture as Metaphor Language, Number, Money
,
MIT Press
,
Cambridge, MA
.
42.
PanahiKazemi
,
L.
, and
Rossi
,
A.
,
2015
, “
Deciding Architecture: A Framework for the Definition of a Temporary Autonomous Architecture
,”
Systema J.
,
3
(
2
), pp.
72
79
.
You do not currently have access to this content.