A small ball resting on a curve in a gravitational field offers a simple and compelling example of potential energy. The force required to move the ball, or to maintain it in a given position on a slope, is the negative of the vector gradient of the potential field: the steeper the curve, the greater the force required to push the ball up the hill (or keep it from rolling down). We thus observe the turning points (horizontal tangency) of the potential energy shape as positions of equilibrium (in which case the “restoring force” drops to zero). In this paper, we appeal directly to this type of system using both one- and two-dimensional shapes: curves and surfaces. The shapes are produced to a desired mathematical form generally using additive manufacturing, and we use a combination of load cells to measure the forces acting on a small steel ball-bearing subject to gravity. The measured forces, as a function of location, are then subject to integration to recover the potential energy function. The utility of this approach, in addition to pedagogical clarity, concerns extension and applications to more complex systems in which the potential energy would not be typically known a priori, for example, in nonlinear structural mechanics in which the potential energy changes under the influence of a control parameter, but there is the possibility of force probing the configuration space. A brief example of applying this approach to a simple elastic structure is presented.

References

References
1.
Borisov
,
A. V.
,
Mamaev
,
I. S.
, and
Kilin
,
A. A.
,
2002
, “
The Rolling Motion of a Ball on a Surface. New Integrals and Hierarchy of Dynamics
,”
Regul. Chaotic Dyn.
,
7
(
2
), pp.
201
219
.
2.
Harris
,
T. A.
,
2001
,
Rolling Bearing Analysis
,
John Wiley and Sons
,
New York
.
3.
Virgin
,
L. N.
,
Lyman
,
T. C.
, and
Davis
,
R. B.
,
2010
, “
Nonlinear Dynamics of a Ball Rolling on a Surface
,”
Am. J. Phys.
,
78
(
3
), pp.
250
257
.
4.
Harris
,
T. A.
, and
Mindel
,
M. H.
,
1973
, “
Rolling Element Bearing Dynamics
,”
Wear
,
23
(
3
), pp.
311
337
.
5.
Virgin
,
L. N.
,
2000
,
Introduction to Experimental Nonlinear Dynamics: A Case Study in Mechanical Vibration
,
Cambridge University Press
,
Cambridge
.
6.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
,
2002
,
Nonlinear Dynamics and Chaos
,
John Wiley & Sons
,
New York
.
7.
Lyon
,
R. H.
,
1975
,
Statistical Energy Analysis of Dynamical Systems: Theory and Applications
,
MIT Press
,
Cambridge, MA
.
8.
Payne
,
L. E.
, and
Sattinger
,
D. H.
,
1975
, “
Saddle Points and Instability of Nonlinear Hyperbolic Equations
,”
Isr. J. Math.
,
22
(
3–4
), pp.
273
303
.
9.
Waalkens
,
H.
,
Burbanks
,
A.
, and
Wiggins
,
S.
,
2005
, “
Efficient Procedure to Compute the Microcanonical Volume of Initial Conditions That Leads to Escape Trajectories From a Multidimensional Potential Well
,”
Phys. Rev. Lett.
,
95
(
8
), p.
084301
.
10.
Ross
,
S. D.
,
Bozorgmagham
,
A. E.
,
Naik
,
S.
, and
Virgin
,
L. N.
,
2018
, “
Experimental Validation of Phase Space Conduits of Transition Between Potential Wells
,”
Phys. Rev. E
,
98
(
5
), p.
052214
.
11.
Xu
,
Y.
,
Virgin
,
L. N.
, and
Ross
,
S. D.
,
2019
, “
On Experimentally Locating Saddle-Points on a Potential Energy Surface From Observed Dynamics
,”
Mech. Syst. Signal Process.
,
130
(
Sept.
), pp.
152
163
.
12.
Wiebe
,
R.
, and
Virgin
,
L. N.
,
2016
, “
On the Experimental Identification of Unstable Static Equilibria
,”
Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci.
,
472
(
2190
), p.
20160172
.
13.
Fitzpatrick
,
R.
,
2012
,
An Introduction to Celestial Mechanics
,
Cambridge University Press
,
Cambridge
.
14.
Harvey, Jr.
,
P. S.
,
Wiebe
,
R.
, and
Gavin
,
H. P.
,
2013
, “
On the Chaotic Response of a Nonlinear Rolling Isolation System
,”
Phys. D: Nonlinear Phenom.
,
256
(
Aug.
), pp.
36
42
.
15.
Moon
,
F. C.
,
2008
,
Chaotic and Fractal Dynamics: Introduction for Applied Scientists and Engineers
,
John Wiley & Sons
,
New York
.
16.
Shaw
,
S. W.
, and
Haddow
,
A. G.
,
1992
, “
On “Roller-Coaster” Experiments for Nonlinear Oscillators
,”
Nonlinear Dyn.
,
3
(
5
), pp.
375
384
.
17.
Thompson
,
J. M. T.
,
Hutchinson
,
J. W.
, and
Sieber
,
J.
,
2017
, “
Probing Shells Against Buckling: A Non-Destructive Technique for Laboratory Testing
,”
Int. J. Bifurcat. Chaos
,
27
(
14
), p.
1730048
.
18.
Zeeman
,
E. C.
,
1976
, “
Catastrophe Theory
,”
Sci. Am.
,
234
(
4
), pp.
65
83
.
19.
Marsden
,
J. E.
,
1978
, “
Qualitative Methods in Bifurcation Theory
,”
Bull. Am. Math. Soc.
,
84
(
6
), pp.
1125
1148
.
20.
Arnold
,
V. I.
,
2003
,
Catastrophe Theory
,
Springer Science & Business Media
,
Berlin
.
21.
Poston
,
T.
, and
Stewart
,
I.
,
2014
,
Catastrophe Theory and Its Applications
,
Dover Publications
,
New York
.
22.
Davis
,
P. J.
, and
Rabinowitz
,
P.
,
2007
,
Methods of Numerical Integration
, 2nd ed.,
Dover Publications, Inc.
,
Mineola, NY
.
23.
Milne
,
W. E.
,
2015
,
Numerical Calculus
,
Princeton University Press
,
Princeton, NJ
.
24.
Stroud
,
A. H.
,
1971
,
Approximate Calculation of Multiple Integrals
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
25.
van Iderstein
,
T.
, and
Wiebe
,
R.
,
2019
, “
Experimental Path Following of Unstable Static Equilibria for Snap-Through Buckling
,” In:
Kerschen
,
G.
, eds.,
Nonlinear Dynamics, Vol. 1, Conference Proceedings of the Society for Experimental Mechanics Series
,
Springer, Cham
, pp.
17
22
.
26.
Virgin
,
L. N.
,
2007
,
Vibration of Axially-Loaded Structures
,
Cambridge University Press
,
Cambridge
.
27.
Zhong
,
J.
,
Virgin
,
L. N.
, and
Ross
,
S. D.
,
2018
, “
A Tube Dynamics Perspective Governing Stability Transitions: An Example Based on Snap-Through Buckling
,”
Int. J. Mech. Sci.
,
149
(
Dec.
), pp.
413
428
.
You do not currently have access to this content.