Polymer matrix composites have high strengths in tension. However, their compressive strengths are much lower than their tensile strengths due to their weak fiber/matrix interfacial shear strengths. We recently developed a new approach to fabricate composites by overwrapping individual carbon fibers or fiber tows with a carbon nanotube sheet and subsequently impregnate them into a matrix to enhance the interfacial shear strengths without degrading the tensile strengths of the carbon fibers. In this study, a theoretical analysis is conducted to identify the appropriate thickness of the nanocomposite interphase region formed by carbon nanotubes embedded in a matrix. Fibers are modeled as an anisotropic elastic material, and the nanocomposite interphase region and the matrix are considered as isotropic. A microbuckling problem is solved for the unidirectional composite under compression. The analytical solution is compared with finite element simulations for verification. It is determined that the critical load at the onset of buckling is lower in an anisotropic carbon fiber composite than in an isotropic fibfer composite due to lower transverse properties in the fibers. An optimal thickness for nanocomposite interphase region is determined, and this finding provides a guidance for the manufacture of composites using aligned carbon nanotubes as fillers in the nanocomposite interphase region.

References

References
1.
Liu
,
Z.
,
Fang
,
S.
,
Moura
,
F.
,
Ding
,
J.
,
Jiang
,
N.
,
Di
,
J.
,
Zhang
,
M.
,
Lepró
,
X.
,
Galvão
,
D.
,
Haines
,
C.
,
Yuan
,
N. Y.
,
Yin
,
S. G.
,
Lee
,
D. W.
,
Wang
,
R.
,
Wang
,
H. Y.
,
Lv
,
W.
,
Dong
,
C.
,
Zhang
,
R. C.
,
Chen
,
M. J.
,
Yin
,
Q.
,
Chong
,
Y. T.
,
Zhang
,
R.
,
Wang
,
X.
,
Lima
,
M. D.
,
Ovalle-Robles
,
R.
,
Qian
,
D.
,
Lu
,
H.
, and
Baughman
,
R. H.
,
2015
, “
Hierarchically Buckled Sheath-Core Fibers for Superelastic Electronics, Sensors, and Muscles
,”
Science
,
349
(
6246
), pp.
400
404
.
2.
Mu
,
J.
,
Hou
,
C.
,
Wang
,
G.
,
Wang
,
X.
,
Zhang
,
Q.
,
Li
,
Y.
,
Wang
,
H.
, and
Zhu
,
M.
,
2016
, “
An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors
,”
Adv. Mater.
,
28
(
43
), pp.
9491
9497
.
3.
Tang
,
L.-G.
, and
Kardos
,
J. L.
,
1997
, “
A Review of Methods for Improving the Interfacial Adhesion Between Carbon Fiber and Polymer Matrix
,”
Polym. Compos.
,
18
(
1
), pp.
100
113
.
4.
Williams
,
J. C.
, and
Starke
,
E. A.
, Jr.
,
2003
, “
Progress in Structural Materials for Aerospace Systems
,”
Acta. Mater.
,
51
(
19
), pp.
5775
5799
.
5.
Soutis
,
C.
,
2005
, “
Carbon Fiber Reinforced Plastics in Aircraft Construction
,”
Mater. Sci. Eng. A
,
412
(
1–2
), pp.
171
176
.
6.
Hahn
,
H.
, and
Sohi
,
M.
,
1986
, “
Buckling of a Fiber Bundle Embedded in Epoxy
,”
Compos. Sci. Technol.
,
27
(
1
), pp.
25
41
.
7.
Steif
,
P. S.
,
1987
, “
An Exact Two-dimensional Approach to Fiber Micro-Buckling
,”
Int. J. Solids Struct.
,
23
(
9
), pp.
1235
1246
.
8.
Tadjbakhsh
,
I. G.
, and
Wang
,
Y.
,
1992
, “
Fiber Buckling in Three-Dimensional Periodic-Array Composites
,”
Int. J. Solids Struct.
,
29
(
24
), pp.
3169
3183
.
9.
Schultheisz
,
C. R.
, and
Waas
,
A. M.
,
1996
, “
Compressive Failure of Composites, Part I: Testing and Micromechanical Theories
,”
Prog. Aerosp. Sci.
,
32
(
1
), pp.
1
42
.
10.
Waas
,
A. M.
, and
Schultheisz
,
C. R.
,
1996
, “
Compressive Failure of Composites, Part II: Experimental Studies
,”
Prog. Aerosp. Sci.
,
32
(
1
), pp.
43
78
.
11.
Kyriakides
,
S.
,
Arseculeratne
,
R.
,
Perry
,
E.
, and
Liechti
,
K.
,
1995
, “
On the Compressive Failure of Fiber Reinforced Composites
,”
Int. J. Solids Struct.
,
32
(
6–7
), pp.
689
738
.
12.
Yongbo
,
Z.
, and
Huimin
,
F.
,
2011
, “
On the Longitudinal Compressive Strength Prediction of Unidirectional Laminated Composites Based on An Improved Model
,”
Polym. Compos.
,
32
(
11
), pp.
1817
1826
.
13.
Harich
,
J.
,
Lapusta
,
Y.
, and
Wagner
,
W.
,
2009
, “
3d FE-Modeling of Surface and Anisotropy Effects During Micro-Buckling in Fiber Composites
,”
Compos. Struct.
,
89
(
4
), pp.
551
555
.
14.
Ji
,
W.
, and
Waas
,
A. M.
,
2007
, “
Global and Local Buckling of a Sandwich Beam
,”
J. Eng. Mech.
,
133
(
2
), pp.
230
237
.
15.
Waas
,
A.
,
Babcock
,
C.
, and
Knauss
,
W.
,
1990
, “
A Mechanical Model for Elastic Fiber Microbuckling
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
138
149
.
16.
Rosen
,
B. W.
,
1965
, “
Mechanics of Composite Strengthening
,”
NASA Technical Reports
, Amercican Society for Metals, Materials Park, OH, pp.
37
75
. https://ntrs.nasa.gov/search.jsp?R=19660035520
17.
Greszczuk
,
L.
,
1975
, “
Microbuckling Failure of Circular Fiber-Reinforced Composites
,”
AIAA J.
,
13
(
10
), pp.
1311
1318
.
18.
Lo
,
K.
, and
Chim
,
E.-M.
,
1992
, “
Compressive Strength of Unidirectional Composites
,”
J. Reinf. Plast. Compos.
,
11
(
8
), pp.
838
896
.
19.
Yeh
,
J.
, and
Teply
,
J.
,
1988
, “
Compressive Response of Kevlar/epoxy Composites
,”
J. Compos. Mater.
,
22
(
3
), pp.
245
257
.
20.
Xu
,
Y. L.
, and
Reifsnider
,
K. L.
,
1993
, “
Micromechanical Modeling of Composite Compressive Strength
,”
J. Compos. Mater.
,
27
(
6
), pp.
572
588
.
21.
Zhang
,
G.
, and
Latour
,
R. A.
, Jr.
,
1994
, “
An Analytical and Numerical Study of Fiber Microbuckling
,”
Compos. Sci. Technol.
,
51
(
1
), pp.
95
109
.
22.
Lapusta
,
Y.
,
Harich
,
J.
, and
Wagner
,
W.
,
2008
, “
Three-Dimensional FE Model for Fiber Interaction Effects During Microbuckling in Composites With Isotropic and Anisotropic Fibers
,”
Int. J. Numer. Methods Biomed. Eng.
,
24
(
12
), pp.
2206
2215
.
23.
Bai
,
Z.
,
Su
,
Y.
, and
Ji
,
B.
,
2016
, “
Buckling Behaviors of Staggered Nanostructure of Biological Materials
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
031011
.
24.
Su
,
Y.
,
Ji
,
B.
,
Hwang
,
K.-C.
, and
Huang
,
Y.
,
2012
, “
Micro-Buckling in the Nanocomposite Structure of Biological Materials
,”
J. Mech. Phys. Solids
,
60
(
10
), pp.
1771
1790
.
25.
Parnes
,
R.
, and
Chiskis
,
A.
,
2002
, “
Buckling of Nano-Fibre Reinforced Composites: A Re-examination of Elastic Buckling
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
855
879
.
26.
Lapusta
,
Y.
,
Labesse-Jied
,
F.
,
Samborskaya
,
A.
, and
Wagner
,
W.
,
2011
, “
On the Effects of Interacting Anisotropic Fibers on the Microbuckling in a Composite
,”
Int. J. Fract.
,
167
(
1
), pp.
103
110
.
27.
Andrianov
,
I. V.
,
Kalamkarov
,
A. L.
, and
Weichert
,
D.
,
2012
, “
Buckling of Fibers in Fiber-Reinforced Composites
,”
Compos. Part B: Eng.
,
43
(
4
), pp.
2058
2062
.
28.
Luo
,
H.
,
Roy
,
S.
, and
Lu
,
H.
,
2012
, “
Dynamic Compressive Behavior of Unidirectional Im7/5250-4 Laminate After Thermal Oxidation
,”
Compos. Sci. Technol.
,
72
(
2
), pp.
159
166
.
29.
Maurin
,
R.
,
Davies
,
P.
,
Baral
,
N.
, and
Baley
,
C.
,
2008
, “
Transverse Properties of Carbon Fibres by Nano-Indentation and Micro-Mechanics
,”
Appl. Compos. Mater.
,
15
(
2
), pp.
61
73
.
30.
Miyagawa
,
H.
,
Sato
,
C.
,
Mase
,
T.
,
Drown
,
E.
,
Drzal
,
L. T.
, and
Ikegami
,
K.
,
2005
, “
Transverse Elastic Modulus of Carbon Fibers Measured by Raman Spectroscopy
,”
Mater. Sci. Eng. A.
,
412
(
1–2
), pp.
88
92
.
31.
Roy
,
S.
,
Lu
,
H.
,
Narasimhan
,
K.
, and
Hussain
,
F.
,
2005
, “
Characterization and Modeling of Strength Enhancement Mechanisms in a Polymer/Clay Nanocomposite
,”
46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Austin, TX
,
Apr. 18–21
.
American Institute of Aeronautics and Astronautics
, p.
1853
.
32.
Roy
,
S.
,
Hussain
,
F.
,
Narasimhan
,
K.
,
Vengadassalam
,
K.
, and
Lu
,
H.
,
2007
, “
E-glass/Polypropylene Pultruded Nanocomposite: Manufacture, Characterisation, Thermal and Mechanical Properties
,”
Polym. Polym. Compos.
,
15
(
2
), pp.
91
102
.
33.
Waas
,
A.
,
1992
, “
Effect of Interphase on Compressive Strength of Unidirectional Composites
,”
ASME Trans. Ser. E J. Appl. Mech.
,
59
, pp.
S183
S188
.
34.
Maligno
,
A.
,
Warrior
,
N.
, and
Long
,
A.
,
2010
, “
Effects of Interphase Material Properties in Unidirectional Fibre Reinforced Composites
,”
Compos. Sci. Technol.
,
70
(
1
), pp.
36
44
.
35.
Drzal
,
L.
,
1990
, “
The Role of the Fiber-Matrix Interphase on Composite Properties
,”
Vacuum
,
41
(
7–9
), pp.
1615
1618
.
36.
Lane
,
R.
,
Hayes
,
S.
, and
Jones
,
F.
,
2001
, “
Fibre/matrix Stress Transfer Through a Discrete Interphase: 2. High Volume Fraction Systems
,”
Compos. Sci. Technol.
,
61
(
4
), pp.
565
578
.
37.
Zhang
,
F.-H.
,
Wang
,
R.-G.
,
He
,
X.-D.
,
Wang
,
C.
, and
Ren
,
L.-N.
,
2009
, “
Interfacial Shearing Strength and Reinforcing Mechanisms of An Epoxy Composite Reinforced Using a Carbon Nanotube/Carbon Fiber Hybrid
,”
J. Mater. Sci.
,
44
(
13
), pp.
3574
3577
.
38.
Lu
,
H.
,
Baughman
,
R. H.
,
Haque
,
M. H.
, and
Fang
,
S. D.
,
2017
, “
Method of Fabricating Carbon Nanotube Sheet Scrolled Fiber Reinforced Polymer Composites and Compositions and Uses Thereof
,” US Patent No. 9,758,628.
39.
Aliev
,
A. E.
,
Oh
,
J.
,
Kozlov
,
M. E.
,
Kuznetsov
,
A. A.
,
Fang
,
S.
,
Fonseca
,
A. F.
,
Ovalle
,
R.
,
Lima
,
M. D.
,
Haque
,
M. H.
,
Gartstein
,
Y. N.
,
Zhang
,
Mei
,
Zakhidov
,
Anvar A.
, and
Baughman
,
Ray H.
,
2009
, “
Giant-stroke, Superelastic Carbon Nanotube Aerogel Muscles
,”
Science
,
323
(
5921
), pp.
1575
1578
.
40.
Huang
,
G.
, and
Lu
,
H.
,
2006
, “
Measurement of Young’s Relaxation Modulus Using Nanoindentation
,”
Mech. Time-Dependent Mater.
,
10
(
3
), pp.
229
243
.
41.
Briscoe
,
B.
,
Fiori
,
L.
, and
Pelillo
,
E.
,
1998
, “
Nano-Indentation of Polymeric Surfaces
,”
J. Phys. D: Appl. Phys.
,
31
(
19
), pp.
2395
2405
.
42.
Xu
,
T.
,
Luo
,
H.
,
Xu
,
Z.
,
Hu
,
Z.
,
Minary-Jolandan
,
M.
,
Roy
,
S.
, and
Lu
,
H.
,
2018
, “
Evaluation of the Effect of Thermal Oxidation and Moisture on the Interfacial Shear Strength of Unidirectional IM7/BMI Composite by Fiber Push-In Nanoindentation
,”
Exp. Mech.
,
58
(
1
), pp.
111
123
.
43.
Novozhilov
,
V. V.
,
1999
,
Foundations of the Nonlinear Theory of Elasticity
,
Courier Corporation
,
Mineola, New York
.
44.
Upadhyaya
,
P.
,
Roy
,
S.
,
Haque
,
M. H.
, and
Lu
,
H.
,
2013
, “
Influence of Nano-Clay Compounding on Thermo-Oxidative Stability and Mechanical Properties of a Thermoset Polymer System
,”
Compos. Sci. Technol.
,
84
, pp.
8
14
.
45.
Tsuda
,
T.
,
Ogasawara
,
T.
,
Moon
,
S.-Y.
,
Nakamoto
,
K.
,
Takeda
,
N.
,
Shimamura
,
Y.
, and
Inoue
,
Y.
,
2014
, “
Three Dimensional Orientation Angle Distribution Counting and Calculation for the Mechanical Properties of Aligned Carbon Nanotube/epoxy Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
65
, pp.
1
9
.
46.
Kardomateas
,
G. A.
, and
Simitses
,
G. J.
,
2004
, “
Comparative Studies on the Buckling of Isotropic, Orthotropic, and Sandwich Columns
,”
Mech. Adv. Mater. Struct.
,
11
(
45
), pp.
309
327
.
47.
Ravindranath
,
P. K.
,
Roy
,
S.
,
Unnikrishnan
,
V.
,
Wang
,
X.
,
Xu
,
T.
,
Baughman
,
R.
, and
Lu
,
H.
,
2019
, “
A Multiscale Model to Study the Enhancement in the Compressive Strength of Multi-Walled CNT Sheet Overwrapped Carbon Fiber Composites
,”
Compos. Struct.
,
219
, pp.
170
178
.
You do not currently have access to this content.