Self-healable and recyclable materials and electronics can improve the reliability and repairability and can reduce environmental pollution; therefore, they promise very broad applications. In this study, we investigated the self-healing performance of dynamic covalent thermoset polyimine and its nanocomposites based on the dynamic covalent chemistry. Heat press was applied to two laminating films of polyimine and its nanocomposites to induce self-healing. The effects of heat press time, temperature, and load on the interfacial shear strength of the rehealed films were investigated. The results showed that increasing the heat press time, temperature, and load can significantly improve the interfacial shear strength and thus the self-healing effect. For polyimine nanocomposites, increasing the heat press time, temperature, and load led to the improved electrical conductivity of the rehealed films.

References

References
1.
Blaiszik
,
B. J.
,
Kramer
,
S. L.
,
Olugebefola
,
S. C.
,
Moore
,
J. S.
,
Sottos
,
N. R.
, and
White
,
S. R.
,
2010
, “
Self-Healing Polymers and Composites
,”
Annu. Rev. Mater. Res.
,
40
, pp.
179
211
.
2.
Yuan
,
Y. C.
,
Yin
,
T.
,
Rong
,
M. Z.
, and
Zhang
,
M. Q.
,
2008
, “
Self Healing in Polymers and Polymer Composites. Concepts, Realization and Outlook: A Review
,”
Express Polym. Lett.
,
2
(
4
), pp.
238
250
.
3.
Thakur
,
V. K.
, and
Kessler
,
M. R.
,
2015
, “
Self-Healing Polymer Nanocomposite Materials: A Review
,”
Polymer
,
69
, pp.
369
383
.
4.
Toohey
,
K. S.
,
Sottos
,
N. R.
,
Lewis
,
J. A.
,
Moore
,
J. S.
, and
White
,
S. R.
,
2007
, “
Self-Healing Materials With Microvascular Networks
,”
Nat. Mater.
,
6
(
8
), pp.
581
585
.
5.
Su
,
C.
,
Acik
,
M.
,
Takai
,
K.
,
Lu
,
J.
,
Hao
,
S. J.
,
Zheng
,
Y.
,
Wu
,
P.
,
Bao
,
Q.
,
Enoki
,
T.
,
Chabal
,
Y. J.
, and
Loh
,
K. P.
,
2012
, “
Probing the Catalytic Activity of Porous Graphene Oxide and the Origin of This Behaviour
,”
Nat. Commun.
,
3
, pp.
1298
1306
.
6.
White
,
S. R.
,
Sottos
,
N. R.
,
Geubelle
,
P. H.
,
Moore
,
J. S.
,
Kessler
,
M.
,
Sriram
,
S. R.
,
Brown
,
E. N.
, and
Viswanathan
,
S.
,
2002
, “
Autonomic Healing of Polymer Composites
,”
Nature
,
409
(
6822
), pp.
794
797
.
7.
Taynton
,
P.
,
Yu
,
K.
,
Shoemaker
,
R. K.
,
Jin
,
Y.
,
Qi
,
H. J.
, and
Zhang
,
W.
,
2014
, “
Heat- or Water-Driven Malleability in a Highly Recyclable Covalent Network Polymer
,”
Adv. Mater.
,
26
(
23
), pp.
3938
3942
.
8.
Li
,
Y.
,
Chen
,
S.
,
Wu
,
M.
, and
Sun
,
J.
,
2012
, “
Polyelectrolyte Multilayers Impart Healability to Highly Electrically Conductive Films
,”
Adv. Mater.
,
24
(
33
), pp.
4578
4582
.
9.
Zou
,
Z.
,
Zhu
,
C.
,
Li
,
Y.
,
Lei
,
X.
,
Zhang
,
W.
, and
Xiao
,
J.
,
2018
, “
Rehealable, Fully Recyclable, and Malleable Electronic Skin Enabled by Dynamic Covalent Thermoset Nanocomposite
,”
Sci. Adv.
,
4
(
2
), p.
eaaq0508
.
10.
Williams
,
K. A.
,
Dreyer
,
D. R.
, and
Bielawski
,
C. W.
,
2008
, “
The Underlying Chemistry of Self-Healing Materials
,”
Mrs Bull.
,
33
(
8
), pp.
759
765
.
11.
Hager
,
M. D.
,
Greil
,
P.
,
Leyens
,
C.
,
Van Der Zwaag
,
S.
, and
Schubert
,
U. S.
,
2010
, “
Self-Healing Materials
,”
Adv. Mater.
,
22
(
47
), pp.
5424
5430
.
12.
Son
,
D.
,
Kang
,
J.
,
Vardoulis
,
O.
,
Kim
,
Y.
,
Matsuhisa
,
N.
,
Oh
,
J. Y.
,
To
,
J. W.
,
Mun
,
J.
,
Katsumata
,
T.
,
Liu
,
Y.
,
McGuire
,
A. F.
,
Krason
,
M.
,
Molina-Lopez
,
F.
,
Ham
,
J.
,
Kraft
,
U.
,
Lee
,
Y.
,
Yun
,
Y.
,
Tok
,
J. B.-H.
, and
Bao
,
Z.
,
2018
, “
An Integrated Self-Healable Electronic Skin System Fabricated via Dynamic Reconstruction of a Nanostructured Conducting Network
,”
Nat. Nanotechnol.
,
13
(
11
), pp.
1057
1065
.
13.
Chen
,
X.
,
Dam
,
M. A.
,
Ono
,
K.
,
Mal
,
A.
,
Shen
,
H.
,
Nutt
,
S. R.
,
Sheran
,
K.
, and
Wudl
,
F.
,
2002
, “
A Thermally Re-Mendable Cross-Linked Polymeric Material
,”
Science
,
295
(
5560
), pp.
1698
1702
.
14.
Yoshie
,
N.
,
Watanabe
,
M.
,
Araki
,
H.
, and
Ishida
,
K.
,
2010
, “
Thermo-Responsive Mending of Polymers Crosslinked by Thermally Reversible Covalent Bond: Polymers From Bisfuranic Terminated Poly (Ethylene Adipate) and Tris-Maleimide
,”
Polym. Degrad. Stab.
,
95
(
5
), pp.
826
829
.
15.
Du
,
P.
,
Liu
,
X.
,
Zheng
,
Z.
,
Wang
,
X.
,
Joncheray
,
T.
, and
Zhang
,
Y.
,
2013
, “
Synthesis and Characterization of Linear Self-Healing Polyurethane Based on Thermally Reversible Diels—Alder Reaction
,”
RSC Adv.
,
3
(
35
), pp.
15475
15482
.
16.
Rodriguez
,
E. D.
,
Luo
,
X.
, and
Mather
,
P. T.
,
2011
, “
Linear/Network Poly (ɛ-Caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH)
,”
ACS Appl. Mater. Interfaces
,
3
(
2
), pp.
152
161
.
17.
Liu
,
J.
,
Liu
,
J.
,
Wang
,
S.
,
Huang
,
J.
,
Wu
,
S.
,
Tang
,
Z.
,
Guo
,
B.
, and
Zhang
,
L.
,
2017
, “
An Advanced Elastomer With an Unprecedented Combination of Excellent Mechanical Properties and High Self-Healing Capability
,”
J. Mater. Chem. A
,
5
(
48
), pp.
25660
25671
.
18.
Zeng
,
C.
,
Seino
,
H.
,
Ren
,
J.
,
Hatanaka
,
K.
, and
Yoshie
,
N.
,
2013
, “
Bio-Based Furan Polymers With Self-Healing Ability
,”
Macromolecules
,
46
(
5
), pp.
1794
1802
.
19.
Hong
,
G.
,
Zhang
,
H.
,
Lin
,
Y.
,
Chen
,
Y.
,
Xu
,
Y.
,
Weng
,
W.
, and
Xia
,
H.
,
2013
, “
Mechanoresponsive Healable Metallosupramolecular Polymers
,”
Macromolecules
,
46
(
21
), pp.
8649
8656
.
20.
Peterson
,
A. M.
,
Jensen
,
R. E.
, and
Palmese
,
G. R.
,
2010
, “
Room-Temperature Healing of a Thermosetting Polymer Using the Diels—Alder Reaction
,”
ACS Appl. Mater. Interfaces
,
2
(
4
), pp.
1141
1149
.
21.
Chung
,
C.
,
Roh
,
Y.
,
Cho
,
S.
, and
Kim
,
J.
,
2004
, “
Crack Healing in Polymeric Materials via Photochemical [2 + 2] Cycloaddition
,”
Chem. Mater.
,
16
(
21
), pp.
3982
3984
.
22.
Amamoto
,
Y.
,
Kamada
,
J.
,
Otsuka
,
H.
,
Takahara
,
A.
, and
Matyjaszewski
,
K.
,
2011
, “
Repeatable Photoinduced Self-Healing of Covalently Cross-Linked Polymers Through Reshuffling of Trithiocarbonate Units
,”
Angew. Chemie Int. Ed.
,
50
(
7
), pp.
1660
1663
.
23.
Ghosh
,
B.
, and
Urban
,
M. W.
,
2009
, “
Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks
,”
Science
,
323
(
5920
), pp.
1458
1460
.
24.
Burnworth
,
M.
,
Tang
,
L.
,
Kumpfer
,
J. R.
,
Duncan
,
A. J.
,
Beyer
,
F. L.
,
Fiore
,
G. L.
,
Rowan
,
S. J.
, and
Weder
,
C.
,
2011
, “
Optically Healable Supramolecular Polymers
,”
Nature
,
472
(
7343
), pp.
334
337
.
25.
Palleau
,
E.
,
Reece
,
S.
,
Desai
,
S. C.
,
Smith
,
M. E.
, and
Dickey
,
M. D.
,
2013
, “
Self-Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics
,”
Adv. Mater.
,
25
(
11
), pp.
1589
1592
.
26.
Xia
,
N. N.
,
Xiong
,
X. M.
,
Rong
,
M. Z.
,
Zhang
,
M. Q.
, and
Kong
,
F.
,
2017
, “
Self-Healing of Polymer in Acidic Water Toward Strength Restoration Through the Synergistic Effect of Hydrophilic and Hydrophobic Interactions
,”
ACS Appl. Mater. Interfaces
,
9
(
42
), pp.
37300
37309
.
27.
Li
,
J.
,
Ejima
,
H.
, and
Yoshie
,
N.
,
2016
, “
Seawater-Assisted Self-Healing of Catechol Polymers via Hydrogen Bonding and Coordination Interactions
,”
ACS Appl. Mater. Interfaces
,
8
(
29
), pp.
19047
19053
.
28.
Xia
,
N. N.
,
Rong
,
M. Z.
, and
Zhang
,
M. Q.
,
2016
, “
Stabilization of Catechol–Boronic Ester Bonds for Underwater Self-Healing and Recycling of Lipophilic Bulk Polymer in Wider PH Range
,”
J. Mater. Chem. A
,
4
(
37
), pp.
14122
14131
.
29.
Adzima
,
B. J.
,
Kloxin
,
C. J.
, and
Bowman
,
C. N.
,
2010
, “
Externally Triggered Healing of a Thermoreversible Covalent Network via Self-Limited Hysteresis Heating
,”
Adv. Mater.
,
22
(
25
), pp.
2784
2787
.
30.
Sheridan
,
R. J.
, and
Bowman
,
C. N.
,
2013
, “
Understanding the Process of Healing of Thermoreversible Covalent Adaptable Networks
,”
Polym. Chem.
,
4
(
18
), pp.
4974
4979
.
31.
Xu
,
F.
, and
Zhu
,
Y.
,
2012
, “
Highly Conductive and Stretchable Silver Nanowire Conductors
,”
Adv. Mater.
,
24
(
37
), pp.
5117
5122
.
32.
Chen
,
S.
,
Wei
,
Y.
,
Yuan
,
X.
,
Lin
,
Y.
, and
Liu
,
L.
,
2016
, “
A Highly Stretchable Strain Sensor Based on a Graphene/Silver Nanoparticle Synergic Conductive Network and a Sandwich Structure
,”
J. Mater. Chem. C
,
4
(
19
), pp.
4304
4311
.
33.
Lipomi
,
D. J.
,
Vosgueritchian
,
M.
,
Tee
,
B. C. K.
,
Hellstrom
,
S. L.
,
Lee
,
J. A.
,
Fox
,
C. H.
, and
Bao
,
Z.
,
2011
, “
Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes
,”
Nat. Nanotechnol.
,
6
(
12
), pp.
788
792
.
34.
Song
,
P.
,
Qin
,
H.
,
Gao
,
H. L.
,
Cong
,
H. P.
, and
Yu
,
S. H.
,
2018
, “
Self-Healing and Superstretchable Conductors From Hierarchical Nanowire Assemblies
,”
Nat. Commun.
9
(
1
), pp.
2786
2794
.
35.
Balazs
,
A. C.
,
Emrick
,
T.
, and
Russell
,
T. P.
,
2006
, “
Nanoparticle Polymer Composites : Where Two Small Worlds Meet
,”
Science
,
314
(
5802
), pp.
1107
1110
.
36.
Tee
,
B. C. K.
,
Wang
,
C.
,
Allen
,
R.
, and
Bao
,
Z.
,
2012
, “
An Electrically and Mechanically Self-Healing Composite With Pressure- and Flexion-Sensitive Properties for Electronic Skin Applications
,”
Nat. Nanotechnol.
,
7
(
12
), pp.
825
832
.
37.
Kubo
,
B. M.
,
Li
,
X.
,
Kim
,
C.
,
Hashimoto
,
M.
,
Wiley
,
B. J.
,
Ham
,
D.
, and
Whitesides
,
G. M.
,
2010
, “
Stretchable Microfluidic Radiofrequency Antennas
,”
Adv. Mater.
,
22
(
25
), pp.
2749
2752
.
38.
Aliev
,
A. E.
,
Oh
,
J.
,
Kozlov
,
M. E.
,
Kuznetsov
,
A. A.
,
Fang
,
S.
,
Fonseca
,
A. F.
,
Ovalle
,
R.
,
Lima
,
M. D.
,
Haque
,
M. H.
,
Gartstein
,
Y. N.
,
Zhang
,
M.
,
Zakhidov
,
A. A.
, and
Baughman
,
R. H.
,
2009
, “
Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles
,”
Science
,
323
(
5921
), pp.
1575
1579
.
39.
Kim
,
D.
,
Ghaffari
,
R.
,
Lu
,
N.
, and
Rogers
,
J. A.
,
2012
, “
Flexible and Stretchable Electronics for Biointegrated Devices
,”
Annu. Rev. Biomed. Eng.
,
14
, pp.
113
128
.
40.
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Mechanics of Stretchable Batteries and Supercapacitors
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
190
199
.
41.
Liu
,
Y.
,
He
,
K.
,
Chen
,
G.
,
Leow
,
W. R.
, and
Chen
,
X.
,
2017
, “
Nature-Inspired Structural Materials for Flexible Electronic Devices
,”
Chem. Rev.
,
117
(
20
), pp.
12893
12941
.
42.
Ma
,
Y.
,
Feng
,
X.
,
Rogers
,
J. A.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2017
, “
Design and Application of ‘J-Shaped’ Stress–Strain Behavior in Stretchable Electronics: A Review
,”
Lab Chip
,
17
(
10
), pp.
1689
1704
.
43.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
44.
Zhu
,
F.
,
Xiao
,
H.
,
Li
,
H.
,
Huang
,
Y.
, and
Ma
,
Y.
,
2019
, “
Irregular Hexagonal Cellular Substrate for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
034501
.
45.
Liu
,
S.
,
Ha
,
T.
, and
Lu
,
N.
,
2019
, “
Experimentally and Numerically Validated Analytical Solutions to Nonbuckling Piezoelectric Serpentine Ribbons
,”
ASME J. Appl. Mech.
,
86
(
5
), p.
051010
.
46.
Song
,
J.
,
Feng
,
X.
, and
Huang
,
Y.
,
2015
, “
Mechanics and Thermal Management of Stretchable Inorganic Electronics
,”
Natl. Sci. Rev.
,
3
(
1
), pp.
128
143
.
47.
Cai
,
M.
,
Nie
,
S.
,
Du
,
Y.
,
Wang
,
C.
, and
Song
,
J.
,
2019
, “
Soft Elastomers With Programmable Stiffness as Strain-Isolating Substrates for Stretchable Electronics
,”
ACS Appl. Mater. Interfaces
,
11
(
15
), pp.
14340
14346
.
48.
Kim
,
C.
, and
Yoshie
,
N.
,
2018
, “
Polymers Healed Autonomously and With the Assistance of Ubiquitous Stimuli: How Can We Combine Mechanical Strength and a Healing Ability in Polymers?
Polym. J.
,
50
(
10
), pp.
919
929
.
49.
Taynton
,
P.
,
Zhu
,
C.
,
Loob
,
S.
,
Shoemaker
,
R.
,
Pritchard
,
J.
,
Jin
,
Y.
, and
Zhang
,
W.
,
2016
, “
Re-Healable Polyimine Thermosets: Polymer Composition and Moisture Sensitivity
,”
Polym. Chem.
,
7
(
46
), pp.
7052
7056
.
50.
Taynton
,
P.
,
Ni
,
H.
,
Zhu
,
C.
,
Yu
,
K.
,
Loob
,
S.
,
Jin
,
Y.
,
Qi
,
H. J.
, and
Zhang
,
W.
,
2016
, “
Repairable Woven Carbon Fiber Composites With Full Recyclability Enabled by Malleable Polyimine Networks
,”
Adv. Mater.
,
28
(
15
), pp.
2904
2909
.
51.
ASTM
,
2010
, “
Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)
,”
ASTM No. D1002-10(2019).
52.
Yu
,
K.
,
Shi
,
Q.
,
Li
,
H.
,
Jabour
,
J.
,
Yang
,
H.
,
Dunn
,
M. L.
,
Wang
,
T.
, and
Qi
,
H. J.
,
2016
, “
Interfacial Welding of Dynamic Covalent Network Polymers
,”
J. Mech. Phys. Solids
,
94
, pp.
1
17
.
53.
Yang
,
H.
,
Yu
,
K.
,
Mu
,
X.
,
Wei
,
Y.
,
Guo
,
Y.
, and
Qi
,
H. J.
,
2016
, “
Molecular Dynamics Studying on Welding Behavior in Thermosetting Polymers Due to Bond Exchange Reactions
,”
RSC Adv.
,
6
(
27
), pp.
22476
22487
.
54.
Yu
,
K.
,
Qian
,
S.
,
Wang
,
T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2019
, “
A Computational Model for Surface Welding in Covalent Adaptable Networks Using Finite-Element Analysis
,”
ASME J. Appl. Mech.
,
83
(
9
), p.
091002
.
You do not currently have access to this content.