Most soft materials resist volumetric changes much more than shape distortions. This experimental observation led to the introduction of the incompressibility constraint in the constitutive description of soft materials. The incompressibility constraint provides analytical solutions for problems which, otherwise, could be solved numerically only. However, in the present work, we show that the enforcement of the incompressibility constraint in the analysis of the failure of soft materials can lead to somewhat nonphysical results. We use hyperelasticity with energy limiters to describe the material failure, which starts via the violation of the condition of strong ellipticity. This mathematical condition physically means inability of the material to propagate superimposed waves because cracks nucleate perpendicular to the direction of a possible wave propagation. By enforcing the incompressibility constraint, we sort out longitudinal waves, and consequently, we can miss cracks perpendicular to longitudinal waves. In the present work, we show that such scenario, indeed, occurs in the problems of uniaxial tension and pure shear of natural rubber. We also find that the suppression of longitudinal waves via the incompressibility constraint does not affect the consideration of the material failure in equibiaxial tension and the practically relevant problem of the failure of rubber bearings under combined shear and compression.

References

References
1.
Barenblatt
,
G. I.
, and
Joseph
,
D. D.
,
1997
,
Collected Papers of R. S. Rivlin
, Vols.
1
2
,
Springer
,
New York
.
2.
Kurashige
,
M.
,
1981
, “
Instability of a Transversely Isotropic Elastic Slab Subjected to Axial Loads
,”
J. Appl. Mech.
,
48
(
2
), pp.
351
356
.
3.
Triantafyllidis
,
N.
, and
Abeyaratne
,
R.
,
1983
, “
Instability of a Finitely Deformed Fiber-Reinforced Elastic Material
,”
J. Appl. Mech.
,
50
(
1
), pp.
149
156
.
4.
Danescu
,
A.
,
1991
, “
Bifurcation in the Traction Problem for a Transversely Isotropic Material
,”
Math. Proc. Camb. Philos. Soc.
,
110
(
2
), pp.
385
394
.
5.
Merodio
,
J.
, and
Ogden
,
R. W.
,
2002
, “
Material Instabilities in Fiber-Reinforced Nonlinearly Elastic Solids Under Plane Deformation
,”
Arch. Mech.
,
54
(
5–6
), pp.
525
552
.
6.
Dorfmann
,
L.
, and
Ogden
,
R. W.
, eds.,
2015
,
Nonlinear Mechanics of Soft Fibrous Materials
,
Springer
,
Wien
.
7.
Simo
,
J. C.
,
1987
, “
On a Fully Three-Dimensional Finite Strain Viscoelastic Damage Model: Formulation and Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
60
(
2
), pp.
153
173
.
8.
Govindjee
,
S.
, and
Simo
,
J. C.
,
1991
, “
A Micro-Mechanically Based Continuum Damage Model of Carbon Black-Filled Rubbers Incorporating the Mullins Effect
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
87
112
.
9.
Johnson
,
M. A.
, and
Beatty
,
M. F.
,
1993
, “
A Constitutive Equation for the Mullins Effect in Stress Controlled in Uniaxial Extension Experiments
,”
Contin. Mech. Thermodyn.
,
5
(
4
), pp.
301
318
.
10.
Miehe
,
C.
,
1995
, “
Discontinuous and Continuous Damage Evolution in Ogden-Type Large-Strain Elastic Materials
,”
Eur. J. Mech. A/Solids
,
14
(
5
), pp.
697
720
.
11.
De Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R. J.
,
1998
, “
Continuum Modeling and Numerical Simulation of Material Damage at Finite Strains
,”
Arch. Comput. Methods Eng.
,
5
, pp.
311
384
.
12.
Ogden
,
R. W.
, and
Roxburgh
,
D. G.
,
1999
, “
A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber
,”
Proc. R. Soc. Lond. Ser. A
,
455
, pp.
2861
2877
.
13.
Menzel
,
A.
, and
Steinmann
,
P.
,
2001
, “
A Theoretical and Computational Framework for Anisotropic Continuum Damage Mechanics at Large Strains
,”
Int. J. Solids Struct.
,
38
(
52
), pp.
9505
9523
.
14.
Guo
,
Z.
, and
Sluys
,
L.
,
2006
, “
Computational Modeling of the Stress-Softening Phenomenon of Rubber Like Materials Under Cyclic Loading
,”
Eur. J. Mech. A/Solids
,
25
(
6
), pp.
877
896
.
15.
De Tommasi
,
D.
,
Puglisi
,
G.
, and
Saccomandi
,
G.
,
2008
, “
Localized Vs Diffuse Damage in Amorphous Materials
,”
Phys. Rev. Lett.
,
100
,
085502
.
16.
Dal
,
H.
, and
Kaliske
,
M.
,
2009
, “
A Micro-Continuum-Mechanical Material Model for Failure of Rubberlike Materials: Application to Ageing-Induced Fracturing
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1340
1356
.
17.
Volokh
,
K. Y.
,
2013
, “
Review of the Energy Limiters Approach to Modeling Failure of Rubber
,”
Rubber Chem. Technol.
,
86
(
3
), pp.
470
487
.
18.
Gent
,
A. N.
,
2001
,
Engineering With Rubber
,
2nd ed.
,
Hanser
,
Munich
.
19.
Volokh
,
K. Y.
,
2017
, “
Fracture as a Material Sink
,”
Mater. Theory
,
1
(
1
),
3
.
20.
Faye
,
A.
,
Lev
,
Y.
, and
Volokh
,
K. Y.
,
2019
, “
The Effect of Local Inertia Around the Crack Tip in Dynamic Fracture of Soft Materials
,”
Mech. Soft Mater.
,
1
(
1
),
4
.
21.
Volokh
,
K. Y.
,
2016
,
Mechanics of Soft Materials
,
Springer
,
Singapore
.
22.
Hadamard
,
J.
,
1903
,
Lecons sur la Propagation des Ondes et les Equations de L’Hydrodynamique
,
Librairie Scientifique A. Hermann
,
Paris
.
23.
Hill
,
R.
,
1962
, “
Acceleration Waves in Solids
,”
J. Mech. Phys. Solids
,
10
(
1
), pp.
1
16
.
24.
Mandel
,
J.
,
1966
, “
Conditions de stabi1ite et postulat de Drucker
,”
Rheology and Soil Mechanics
,
J.
Kravtchenko
and
P. M.
Sirieys
, eds.,
Springer-Verlag
,
New York
, pp.
58
68
.
25.
Rice
,
J. R.
,
1976
, “
The Localization of Plastic Deformation
,”
Theoretical and Applied Mechanics
(
Proceedings of the 14th International Congress on Theoretical and Applied Mechanics
,
Delft
,
1976
,
W. T.
Koiter
, ed.), Vol.
1
,
North-Holland Publishing Co.
,
Amsterdam
, pp.
207
220
.
26.
Volokh
,
K. Y.
,
2010
, “
On Modeling Failure of Rubberlike Materials
,”
Mech. Res. Commun.
,
37
(
8
), pp.
684
689
.
27.
Ting
,
T. C. T.
,
2006
, “
Longitudinal and Transverse Waves in Anisotropic Elastic Materials
,”
Acta Mech.
,
185
(
3–4
), pp.
147
164
.
28.
Mythravaruni
,
P.
, and
Volokh
,
K. Y.
,
2018
, “
Failure of Rubber Bearings Under Combined Shear and Compression
,”
ASME J. Appl. Mech.
,
85
(
7
),
074503
.
29.
Rajagopal
,
K. R.
, and
Wineman
,
A. S.
,
1987
, “
New Universal Relations for Nonlinear Isotropic Elastic Materials
,”
J. Elast.
,
17
(
1
), pp.
75
83
.
30.
Mihai
,
L. A.
,
Budday
,
S.
,
Holzapfel
,
G. A.
,
Kuhl
,
E.
, and
Goriely
,
A.
,
2017
, “
A Family of Hyperelastic Models for Human Brain Tissue
,”
J. Mech. Phys. Solids
,
106
, pp.
60
79
.
31.
Takahashi
,
Y.
,
2012
, “
Damage of Rubber Bearings and Dumpers of Bridges in 2011 Great East Japan Earthquake
,”
Proceedings of the International Symposium on Engineering, Lessons Learned From the 2011 Great East Japan Earthquake
,
Tokyo, Japan
,
Mar. 1–4
.
32.
Lee
,
S.
, and
Pharr
,
M.
,
2019
, “
Sideways and Stable Crack Propagation in a Silicone Elastomer
,”
Proc. Natl. Acad. Sci. U.S.A.
,
116
(
19
), pp.
9251
9256
.
You do not currently have access to this content.