The competition between the structural rigidity and the van der Waals interactions may lead to collapsing of aligned nanotubes, and the resulting changes of both configurations and properties promise the applications of nanotubes in nano-composites and nano-electronics. In this paper, a finite-deformation model is applied to study the adhesion of parallel multiwall nanotubes with both partial and full collapsing, in which the noncontact adhesion energy is analytically determined. The analytical solutions of both configurations and energies of collapsed nanotubes are consistent with the molecular dynamics (MD) results, demonstrating the effectiveness of the finite-deformation model. To study the critical conditions of generating the partially and fully collapsed multiwall nanotubes, our analytical model gives the predictions for both the geometry- and energy-related critical diameters, which are helpful for the stability analysis and design of nanotube-based nano-devices.

References

References
1.
Ajayan
,
P. M.
,
Schadler
,
L. S.
,
Giannaris
,
C.
, and
Rubio
,
A.
,
2000
, “
Single-Walled Carbon Nanotube-Polymer Composites: Strength and Weakness
,”
Adv. Mater.
,
12
(
10
), pp.
750
753
.
2.
Han
,
Y.
,
Zhang
,
X.
,
Yu
,
X.
,
Zhao
,
J.
,
Li
,
S.
,
Liu
,
F.
,
Gao
,
P.
,
Zhang
,
Y.
,
Zhao
,
T.
, and
Li
,
Q.
,
2015
, “
Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites
,”
Sci. Rep.
,
5
, p.
11533
.
3.
Thostenson
,
E. T.
,
Ren
,
Z. F.
, and
Chou
,
T. W.
,
2001
, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
61
(
13
), pp.
1899
1912
.
4.
Coleman
,
J. N.
,
Khan
,
U.
,
Blau
,
W. J.
, and
Gun'ko
,
Y. K.
,
2006
, “
Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites
,”
Carbon
,
44
(
9
), pp.
1624
1652
.
5.
Ruoff
,
R. S.
,
Tersoff
,
J.
,
Lorents
,
D. C.
,
Subramoney
,
S.
, and
Chan
,
B.
,
1993
, “
Radial Deformation of Carbon Nanotubes by Van Der Waals Forces
,”
Nature
,
364
(
6437
), pp.
514
516
.
6.
Chopra
,
N. G.
,
Benedict
,
L. X.
,
Crespi
,
V. H.
,
Cohen
,
M. L.
,
Louie
,
S. G.
, and
Zettl
,
A.
,
1995
, “
Fully Collapsed Carbon Nanotubes
,”
Nature
,
377
(
6545
), pp.
135
138
.
7.
Lu
,
W.
, and
Chou
,
T.-W.
,
2011
, “
Analysis of the Entanglements in Carbon Nanotube Fibers Using a Self-Folded Nanotube Model
,”
J. Mech. Phys. Solids
,
59
(
3
), pp.
511
524
.
8.
Plaut
,
R. H.
,
Borum
,
A. D.
, and
Dillard
,
D. A.
,
2012
, “
Analysis of Carbon Nanotubes and Graphene Nanoribbons With Folded Racket Shapes
,”
ASME J. Eng. Mater. Technol.
,
134
(
2
), p.
021009
.
9.
Giusca
,
C. E.
,
Tison
,
Y.
, and
Silva
,
S. R. P.
,
2008
, “
Evidence for Metal-Semiconductor Transitions in Twisted and Collapsed Double-Walled Carbon Nanotubes by Scanning Tunneling Microscopy
,”
Nano Lett.
,
8
(
10
), pp.
3350
3356
.
10.
Soares
,
J. S.
,
Barboza
,
A. P. M.
,
Araujo
,
P. T.
,
Barbosa Neto
,
N. M.
,
Nakabayashi
,
D.
,
Shadmi
,
N.
,
Yarden
,
T. S.
,
Ismach
,
A.
,
Geblinger
,
N.
,
Joselevich
,
E.
,
Vilani
,
C.
,
Cancado
,
L. G.
,
Novotny
,
L.
,
Dresselhaus
,
G.
,
Dresselhaus
,
M. S.
,
Neves
,
B. R. A.
,
Mazzoni
,
M. S. C.
, and
Jorio
,
A.
,
2010
, “
Modulating the Electronic Properties Along Carbon Nanotubes Via Tube-Substrate Interaction
,”
Nano Lett.
,
10
(
12
), pp.
5043
5048
.
11.
Lim
,
S. C.
,
Choi
,
H. K.
,
Jeong
,
H. J.
,
Song
,
Y. I.
,
Kim
,
G. Y.
,
Jung
,
K. T.
, and
Lee
,
Y. H.
,
2006
, “
A Strategy for Forming Robust Adhesion With the Substrate in a Carbon-Nanotube Field-Emission Array
,”
Carbon
,
44
(
13
), pp.
2809
2815
.
12.
Liu
,
Z.
,
Jiao
,
L.
,
Yao
,
Y.
,
Xian
,
X.
, and
Zhang
,
J.
,
2010
, “
Aligned, Ultralong Single-Walled Carbon Nanotubes: From Synthesis, Sorting, to Electronic Devices
,”
Adv. Mater.
,
22
(
21
), pp.
2285
2310
.
13.
Yao
,
S.
, and
Zhu
,
Y.
,
2015
, “
Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices
,”
Adv. Mater.
,
27
(
9
), pp.
1480
1511
.
14.
Zhang
,
A.
, and
Lieber
,
C. M.
,
2016
, “
Nano-Bioelectronics
,”
Chem. Rev.
,
116
(
1
), pp.
215
257
.
15.
Ge
,
Q.
,
Dunn
,
C. K.
,
Qi
,
H. J.
, and
Dunn
,
M. L.
,
2014
, “
Active Origami by 4D Printing
,”
Smart Mater. Struct.
,
23
(
9
), p.
094007
.
16.
Zhong Xun
,
K.
,
Ee Mei Teoh
,
J.
,
Yong
,
L.
,
Chee Kai
,
C.
,
Shoufeng
,
Y.
,
Jia
,
A.
,
Kah Fai
,
L.
, and
Wai Yee
,
Y.
,
2015
, “
3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing
,”
Virtual Phys. Prototyping
,
10
(
3
), pp.
103
122
.
17.
Blees
,
M. K.
,
Barnard
,
A. W.
,
Rose
,
P. A.
,
Roberts
,
S. P.
,
McGill
,
K. L.
,
Huang
,
P. Y.
,
Ruyack
,
A. R.
,
Kevek
,
J. W.
,
Kobrin
,
B.
,
Muller
,
D. A.
, and
McEuen
,
P. L.
,
2015
, “
Graphene Kirigami
,”
Nature
,
524
(
7564
), pp.
204
207
.
18.
Qi
,
Z.
,
Campbell
,
D. K.
, and
Park
,
H. S.
,
2014
, “
Atomistic Simulations of Tension-Induced Large Deformation and Stretchability in Graphene Kirigami
,”
Phys. Rev. B
,
90
(
24
), p.
245437
.
19.
Rogers
,
J.
,
Huang
,
Y.
,
Schmidt
,
O. G.
, and
Gracias
,
D. H.
,
2016
, “
Origami MEMS and NEMS
,”
Mrs Bull.
,
41
(
2
), pp.
123
129
.
20.
Cavallo
,
F.
, and
Lagally
,
M. G.
,
2015
, “
Nano-Origami: Art and Function
,”
Nano Today
,
10
(
5
), pp.
538
541
.
21.
Chang
,
T.
,
2008
, “
Dominoes in Carbon Nanotubes
,”
Phys. Rev. Lett.
,
101
(
17
), p.
175501
.
22.
Xue
,
Q.
,
Xia
,
D.
,
Lv
,
C.
,
Jing
,
N.
, and
Ling
,
C.
,
2011
, “
Molecule Delivery by the Domino Effect of Carbon Nanotubes
,”
J. Phys. Chem. C
,
115
(
42
), pp.
20471
20480
.
23.
Dai
,
C.
,
Guo
,
Z.
,
Zhang
,
H.
, and
Chang
,
T.
,
2016
, “
A Nanoscale Linear-to-Linear Motion Converter of Graphene
,”
Nanoscale
,
8
(
30
), pp.
14406
14410
.
24.
Tang
,
T.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2005
, “
Adhesion Between Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
97
(
7
), p.
074304
.
25.
Zhang
,
C.
,
Chen
,
L.
, and
Chen
,
S.
,
2013
, “
Adhesion Between Two Radially Collapsed Single-Walled Carbon Nanotubes
,”
Acta Mech.
,
224
(
11
), pp.
2759
2770
.
26.
Yuan
,
X.
,
Wang
,
Y.
, and
Zhu
,
B.
,
2018
, “
Adhesion Between Two Carbon Nanotubes: Insights From Molecular Dynamics Simulations and Continuum Mechanics
,”
Int. J. Mech. Sci.
,
138–139
, pp.
323
336
.
27.
Zhang
,
S. L.
,
Khare
,
R.
,
Belytschko
,
T.
,
Hsia
,
K. J.
,
Mielke
,
S. L.
, and
Schatz
,
G. C.
,
2006
, “
Transition States and Minimum Energy Pathways for the Collapse of Carbon Nanotubes
,”
Phys. Rev. B
,
73
(
7
), p.
075423
.
28.
Meng
,
X.
,
Li
,
M.
,
Kang
,
Z.
,
Zhang
,
X.
, and
Xiao
,
J.
,
2013
, “
Mechanics of Self-Folding of Single-Layer Graphene
,”
J. Phys. D: Appl. Phys.
,
46
(
5
), p.
055308
.
29.
Torres-Dias
,
A. C.
,
Cerqueira
,
T. F. T.
,
Cui
,
W.
,
Marques
,
M. A. L.
,
Botti
,
S.
,
Machon
,
D.
,
Hartmann
,
M. A.
,
Sun
,
Y.
,
Dunstan
,
D. J.
, and
San-Miguel
,
A.
,
2017
, “
From Mesoscale to Nanoscale Mechanics in Single-Wall Carbon Nanotubes
,”
Carbon
,
123
, pp.
145
150
.
30.
Meng
,
X.-H.
,
Li
,
M.
,
Kang
,
Z.
, and
Xiao
,
J.-L.
,
2014
, “
Folding of Multi-Layer Graphene Sheets Induced by Van Der Waals Interaction
,”
Acta Mech. Sin.
,
30
(
3
), pp.
410
417
.
31.
Sarabadani
,
J.
,
Naji
,
A.
,
Asgari
,
R.
, and
Podgornik
,
R.
,
2011
, “
Many-Body Effects in the Van Der Waals-Casimir Interaction Between Graphene Layers
,”
Phys. Rev. B
,
84
(
15
), p.
155407
32.
Yuan
,
X.
, and
Wang
,
Y.
,
2017
, “
Adhesion of Single- and Multi-Walled Carbon Nanotubes to Silicon Substrate: Atomistic Simulations and Continuum Analysis
,”
J. Phys. D-Appl. Phys.
,
50
(
39
), p.
395303
.
33.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
,
2004
, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
52
(
4
), pp.
789
821
.
34.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
35.
Stukowski
,
A.
,
2010
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO-the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
.
36.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.
37.
Kudin
,
K. N.
,
Scuseria
,
G. E.
, and
Yakobson
,
B. I.
,
2001
, “
C2F, BN, and C Nanoshell Elasticity From ab Initio Computations
,”
Phys. Rev. B
,
64
(
23
), p.
235406
.
38.
Wei
,
Y.
,
Wang
,
B.
,
Wu
,
J.
,
Yang
,
R.
, and
Dunn
,
M. L.
,
2013
, “
Bending Rigidity and Gaussian Bending Stiffness of Single-Layered Graphene
,”
Nano Lett.
,
13
(
1
), pp.
26
30
.
39.
Zhang
,
D. B.
,
Akatyeva
,
E.
, and
Dumitrica
,
T.
,
2011
, “
Bending Ultrathin Graphene at the Margins of Continuum Mechanics
,”
Phys. Rev. Lett.
,
106
(
25
), p.
255503
.
40.
Wang
,
C. Y.
,
Mylvaganam
,
K.
, and
Zhang
,
L. C.
,
2009
, “
Wrinkling of Monolayer Graphene: A Study by Molecular Dynamics and Continuum Plate Theory
,”
Phys. Rev. B
,
80
(
15
), p.
155445
.
41.
Zhao
,
J.
,
Jiang
,
J.-W.
,
Jia
,
Y.
,
Guo
,
W.
, and
Rabczuk
,
T.
,
2013
, “
A Theoretical Analysis of Cohesive Energy Between Carbon Nanotubes, Graphene and Substrates
,”
Carbon
,
57
, pp.
108
119
.
You do not currently have access to this content.