Flexible elastic beams can function as dexterous manipulators at multiple length-scales and in various niche applications. As a step toward achieving controlled manipulation with flexible structures, we introduce the problem of approximating desired quasi-static deformations of a flexible beam, modeled as an elastica, by optimizing the loads applied. We presume the loads to be concentrated, with the number and nature of their application prescribed based on design considerations and operational constraints. For each desired deformation, we pose the problem of computing the requisite set of loads to mimic the target shape as one of optimal approximations. In the process, we introduce a novel generalization of the forward problem by considering the inclinations of the loads applied to be functionals of the solution. This turns out to be especially beneficial when analyzing tendon-driven manipulators. We demonstrate the shape control realizable through load optimization using a diverse set of experiments.

References

References
1.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K.
,
Wood
,
R.
, and
Walsh
,
C.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Rob. Auton. Syst.
,
73
, pp.
135
143
.
2.
Degani
,
A.
,
Choset
,
H.
,
Zubiate
,
B.
,
Ota
,
T.
, and
Zenati
,
M.
,
2008
, “
Highly Articulated Robotic Probe for Minimally Invasive Surgery
,” IEEE International Conference on Robotics and Automation (
ICRA
), Orlando, FL, May 15–19, pp.
3273
3276
.
3.
Antman
,
S.
,
2006
,
Nonlinear Problems of Elasticity
(Applied Mathematical Sciences),
Springer
,
New York
.
4.
Bisshopp
,
K.
, and
Drucker
,
D.
,
1945
, “
Large Deflection of Cantilever Beams
,”
Q. Appl. Math.
,
3
(
3
), pp.
272
275
.
5.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
London
.
6.
Navaee
,
S.
, and
Elling
,
R.
,
1992
, “
Equilibrium Configurations of Cantilever Beams Subjected to Inclined End Loads
,”
ASME J. Appl. Mech.
,
59
(
3
), pp.
572
579
.
7.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
8.
Batista
,
M.
,
2014
, “
Analytical Treatment of Equilibrium Configurations of Cantilever Under Terminal Loads Using Jacobi Elliptical Functions
,”
Int. J. Solids Struct.
,
51
(
13
), pp.
2308
2326
.
9.
Wang
,
C.
,
1981
, “
Large Deflections of an Inclined Cantilever With an End Load
,”
Int. J. Nonlinear Mech.
,
16
(
2
), pp.
155
164
.
10.
Wang
,
C.
, and
Kitipornchai
,
S.
,
1992
, “
Shooting-Optimization Technique for Large Deflection Analysis of Structural Members
,”
Eng. Struct.
,
14
(
4
), pp.
231
240
.
11.
Wang
,
C.
,
Lam
,
K.
,
He
,
X.
, and
Chucheepsakul
,
S.
,
1997
, “
Large Deflections of an End Supported Beam Subjected to a Point Load
,”
Int. J. Nonlinear Mech.
,
32
(
1
), pp.
63
72
.
12.
Shvartsman
,
B.
,
2013
, “
Analysis of Large Deflections of a Curved Cantilever Subjected to a Tip-Concentrated Follower Force
,”
Int. J. Nonlinear Mech.
,
50
, pp.
75
80
.
13.
Watson
,
L.
, and
Wang
,
C.
,
1981
, “
A Homotopy Method Applied to Elastica Problems
,”
Int. J. Solids. Struct.
,
17
(
1
), pp.
29
37
.
14.
Zhang
,
X.
, and
Yang
,
J.
,
2005
, “
Inverse Problem of Elastica of a Variable-Arc-Length Beam Subjected to a Concentrated Load
,”
Acta Mech. Sin.
,
21
(
5
), pp.
444
450
.
15.
Hinze
,
M.
,
Pinnau
,
R.
,
Ulbrich
,
M.
, and
Ulbrich
,
S.
,
2008
,
Optimization With PDE Constraints. Mathematical Modelling: Theory and Applications
,
Springer
,
Dordrecht, The Netherlands
.
16.
Haslinger
,
J.
,
2003
,
Introduction to Shape Optimization: Theory, Approximation, and Computation
, Vol.
7
,
SIAM
,
Philadelphia, PA
.
17.
Shoup
,
T.
, and
McLarnan
,
C.
,
1971
, “
On the Use of the Undulating Elastica for the Analysis of Flexible Link Mechanisms
,”
J. Eng. Ind.
,
93
(
1
), pp.
263
267
.
18.
Wilson
,
J.
, and
Snyder
,
J.
,
1988
, “
The Elastica With End-Load Flip-Over
,”
ASME J. Appl. Mech.
,
55
(
4
), pp.
845
848
.
19.
Gravagne
,
I. A.
, and
Walker
,
I. D.
,
2002
, “
Manipulability, Force, and Compliance Analysis for Planar Continuum Manipulators
,”
IEEE Trans. Rob. Autom.
,
18
(
3
), pp.
263
273
.
20.
Li
,
C.
, and
Rahn
,
C.
,
2002
, “
Design of Continuous Backbone, Cable-Driven Robots
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
265
271
.
21.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
.
22.
Rucker
,
C.
, and
Webster
,
R.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
.
23.
Camarillo
,
D.
,
Milne
,
C.
,
Carlson
,
C.
,
Zinn
,
M.
, and
Salisbury
,
K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1262
1273
.
24.
Webster
,
R. J.
, III.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
25.
Chirikjian
,
G.
,
1994
, “
Hyper-Redundant Manipulator Dynamics: A Continuum Approximation
,”
Adv. Rob.
,
9
(
3
), pp.
217
243
.
26.
Challamel
,
N.
,
Kocsis
,
A.
, and
Wang
,
C.
,
2015
, “
Discrete and Non-Local Elastica
,”
Int. J. Nonlinear Mech.
,
77
, pp.
128
140
.
27.
Wang
,
C.
,
2015
, “
Longest Reach of a Cantilever With a Tip Load
,”
Eur. J. Phys.
,
37
(
1
), p.
012001
.
28.
Mochiyama
,
H.
,
Watari
,
M.
, and
Fujimoto
,
H.
,
2007
, “
A Robotic Catapult Based on the Closed Elastica and Its Application to Robotic Tasks
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Diego, CA, Oct. 29–Nov. 2, pp.
1508
1513
.
29.
Patricio
,
P.
,
Adda-Bedia
,
M.
, and
Ben Amar
,
M.
,
1999
, “
An Elastica Problem: Instabilities of an Elastic Arch
,”
Phys. Sect. D
,
124
(
1–3
), pp.
285
295
.
30.
Plaut
,
R.
, and
Virgin
,
L.
,
2009
, “
Vibration and Snap-Through of Bent Elastica Strips Subjected to End Rotations
,”
ASME J. Appl. Mech.
,
76
(
4
), p.
041011
.
31.
Armanini
,
C.
,
Dal Corso
,
F.
,
Misseroni
,
D.
, and
Bigoni
,
D.
,
2017
, “
From the Elastica Compass to the Elastica Catapult: An Essay on the Mechanics of Soft Robot Arm
,”
Proc. R. Soc. A
,
473
(
2198
), p.
20160870
.
32.
Griner
,
G.
,
1984
, “
A Parametric Solution to the Elastic Pole-Vaulting Pole Problem
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
409
414
.
33.
Zhang
,
Y.
,
Wang
,
Y.
,
Li
,
Z.
,
Huang
,
Y.
, and
Li
,
D.
,
2007
, “
Snap-Through and Pull-in Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading
,”
J. Microelectromech. Syst.
,
16
(
3
), pp.
684
693
.
34.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
35.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C.
, and
Whitesides
,
G.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
36.
Connolly
,
F.
,
Walsh
,
C.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci.
,
114
(
1
), pp.
51
56
.
37.
Yang
,
D.
,
Mosadegh
,
B.
,
Ainla
,
A.
,
Lee
,
B.
,
Khashai
,
F.
,
Suo
,
Z.
,
Bertoldi
,
K.
, and
Whitesides
,
G.
,
2015
, “
Buckling of Elastomeric Beams Enables Actuation of Soft Machines
,”
Adv. Mater.
,
27
(
41
), pp.
6323
6327
.
38.
Huang
,
W.
,
2002
, “
On the Selection of Shape Memory Alloys for Actuators
,”
Mater. Des.
,
23
(
1
), pp.
11
19
.
39.
Bar-Cohen
,
Y.
,
2004
, “
Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges
,”
SPIE Press Monographs
,
SPIE
,
Bellingham, WA
.
40.
Trivedi
,
D.
,
Rahn
,
C.
,
Kier
,
W.
, and
Walker
,
I.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, and Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), pp.
99
117
.
41.
Kier
,
W.
, and
Smith
,
K.
,
1985
, “
Tongues, Tentacles and Trunks: The Biomechanics of Movement in Muscular-Hydrostats
,”
Zool. J. Linnean Soc.
,
83
(
4
), pp.
307
324
.
42.
Hirose
,
S.
,
1993
,
Biologically Inspired Robots: Snake-like Locomotors and Manipulators
, Vol.
1093
,
Oxford University Press
,
Oxford, UK
.
43.
Cicconofri
,
G.
, and
DeSimone
,
A.
,
2015
, “
A Study of Snake-like Locomotion Through the Analysis of a Flexible Robot Model
,”
Proc. R. Soc. A
,
471
(
2184
), p.
20150054
.
44.
Hannan
,
M.
, and
Walker
,
I.
,
2003
, “
Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots
,”
J. Rob. Syst.
,
20
(
2
), pp.
45
63
.
45.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
.
46.
Immega
,
G.
, and
Antonelli
,
K.
,
1995
, “
The KSI Tentacle Manipulator
,”
IEEE
International Conference on Robotics and Automation
, Nagoya, Japan, May 21–27, pp.
3149
3154
.
47.
Buckingham
,
R.
,
2002
, “
Snake Arm Robots
,”
Ind. Rob.
,
29
(
3
), pp.
242
245
.
48.
Yau
,
J.
,
2010
, “
Closed-Form Solutions of Large Deflection for a Guyed Cantilever Column Pulled by an Inclination Cable
,”
J. Mar. Sci. Technol.
,
18
(
1
), pp.
130
136
.
49.
Batista
,
M.
,
2015
, “
Large Deflection of Cantilever Rod Pulled by Cable
,”
Appl. Math. Model.
,
39
(
10–11
), pp.
3175
3182
.
50.
Brander
,
D.
,
Gravesen
,
J.
, and
Nørbjerg
,
T.
,
2017
, “
Approximation by Planar Elastic Curves
,”
Adv. Comput. Math.
,
43
(
1
), pp.
25
43
.
51.
Søndergaard
,
A.
,
Feringa
,
J.
,
Nørbjerg
,
T.
,
Steenstrup
,
K.
,
Brander
,
D.
,
Graversen
,
J.
,
Markvorsen
,
S.
,
Bærentzen
,
A.
,
Petkov
,
K.
,
Hattel
,
J.
,
Clausen
,
K.
,
Jensen
,
K.
,
Knudsen
,
L.
, and
Kortbek
,
J.
,
2016
, “
Robotic Hot-Blade Cutting
,”
Robotic Fabrication in Architecture, Art and Design
,
Springer
,
Cham, Switzerland
, pp.
150
164
.
52.
Wriggers
,
P.
,
2008
,
Nonlinear Finite Element Methods
,
Springer
,
Berlin
.
53.
Rao
,
N.
, and
Rao
,
V.
,
1986
, “
On the Large Deflection of Cantilever Beams With End Rotational Load
,”
Z. Angew. Math. Mech.
,
66
(
10
), pp.
507
509
.
54.
Elishakoff
,
I.
,
2005
, “
Controversy Associated With the so-Called Follower Forces: Critical Overview
,”
Appl. Mech. Rev.
,
58
(
2
), pp.
117
142
.
55.
Munson
,
T.
,
Sarich
,
J.
,
Wild
,
S.
,
Benson
,
S.
, and
McInnes
,
L.
,
2017
, “
Tao 3.8 Users Manual
,” Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL.
56.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
(Springer Series in Operations Research and Financial Engineering),
Springer
,
New York
.
57.
Simo
,
J.
,
1985
, “
A Finite Strain Beam Formulation. the Three-Dimensional Dynamic Problem—Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.
58.
Chen
,
J.
, and
Li
,
H.
,
2011
, “
On an Elastic Rod Inside a Slender Tube Under End Twisting Moment
,”
ASME J. Appl. Mech
,
78
(
4
), p.
041009
.
59.
Mahvash
,
M.
, and
Dupont
,
P.
,
2011
, “
Stiffness Control of Surgical Continuum Manipulators
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
334
345
.
60.
Okubo
,
S.
, and
Tortorelli
,
D.
,
2004
, “
Control of Nonlinear, Continuous, Dynamic Systems Via Finite Elements, Sensitivity Analysis, and Optimization
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
183
199
.
You do not currently have access to this content.