The electrospinning process enables the fabrication of randomly distributed nonwoven polymer fiber networks with high surface area and high porosity, making them ideal candidates for multifunctional materials. The mechanics of nonwoven networks has been well established for elastic deformations. However, the mechanical properties of the polymer fibrous networks with large deformation are largely unexplored, while understanding their elastic and plastic mechanical properties at different fiber volume fractions, fiber aspect ratio, and constituent material properties is essential in the design of various polymer fibrous networks. In this paper, a representative volume element (RVE) based finite element model with long fibers is developed to emulate the randomly distributed nonwoven fibrous network microstructure, enabling us to systematically investigate the mechanics and large deformation behavior of random nonwoven networks. The results show that the network volume fraction, the fiber aspect ratio, and the fiber curliness have significant influences on the effective stiffness, effective yield strength, and the postyield behavior of the resulting fiber mats under both tension and shear loads. This study reveals the relation between the macroscopic mechanical behavior and the local randomly distributed network microstructure deformation mechanism of the nonwoven fiber network. The model presented here can also be applied to capture the mechanical behavior of other complex nonwoven network systems, like carbon nanotube networks, biological tissues, and artificial engineering networks.

References

References
1.
Chen
,
F. J.
,
Porter
,
D.
, and
Vollrath
,
F.
,
2012
, “
Morphology and Structure of Silkworm Cocoons
,”
Mat. Sci. Eng. C-Mater.
,
32
(
4
), pp.
772
778
.
2.
Camelliti
,
P.
,
Borg
,
T. K.
, and
Kohl
,
P.
,
2005
, “
Structural and Functional Characterisation of Cardiac Fibroblasts
,”
Cardiovasc. Res.
,
65
(
1
), pp.
40
51
.
3.
Snow
,
E. S.
,
Novak
,
J. P.
,
Campbell
,
P. M.
, and
Park
,
D.
,
2003
, “
Random Networks of Carbon Nanotubes as an Electronic Material
,”
Appl. Phys. Lett.
,
82
(
13
), pp.
2145
2147
.
4.
El-Kharouf
,
A.
,
Mason
,
T. J.
,
Brett
,
D. J. L.
, and
Pollet
,
B. G.
,
2012
, “
Ex-Situ Characterisation of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells
,”
J. Power Sources
,
218
, pp.
393
404
.
5.
Henriksson
,
M.
,
Berglund
,
L. A.
,
Isaksson
,
P.
,
Lindstrom
,
T.
, and
Nishino
,
T.
,
2008
, “
Cellulose Nanopaper Structures of High Toughness
,”
Biomacromolecules
,
9
(
6
), pp.
1579
1585
.
6.
Li
,
D.
, and
Xia
,
Y. N.
,
2004
, “
Electrospinning of Nanofibers: Reinventing the Wheel?
,”
Adv. Mater.
,
16
(
14
), pp.
1151
1170
.
7.
Khil
,
M. S.
,
Cha
,
D. I.
,
Kim
,
H. Y.
,
Kim
,
I. S.
, and
Bhattarai
,
N.
,
2003
, “
Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
67
(
2
), pp.
675
679
.
8.
Gopal
,
R.
,
Kaur
,
S.
,
Ma
,
Z.
,
Chan
,
C.
,
Ramakrishna
,
S.
, and
Matsuura
,
T.
,
2006
, “
Electrospun Nanofibrous Filtration Membrane
,”
J. Membr. Sci.
,
281
(
1–2
), pp.
581
586
.
9.
Zamani
,
M.
,
Prabhakaran
,
M. P.
, and
Ramakrishna
,
S.
,
2013
, “
Advances in Drug Delivery Via Electrospun and Electrosprayed Nanomaterials
,”
Int. J. Nanomed.
,
8
, p.
2997
.
10.
Dai
,
Y.
,
Liu
,
W.
,
Formo
,
E.
,
Sun
,
Y.
, and
Xia
,
Y.
,
2011
, “
Ceramic Nanofibers Fabricated by Electrospinning and Their Applications in Catalysis, Environmental Science, and Energy Technology
,”
Polym. Adv. Technol.
,
22
(
3
), pp.
326
338
.
11.
Pai
,
C. L.
,
Boyce
,
M. C.
, and
Rutledge
,
G. C.
,
2011
, “
On the Importance of Fiber Curvature to the Elastic Moduli of Electrospun Nonwoven Fiber Meshes
,”
Polymer
,
52
(
26
), pp.
6126
6133
.
12.
Wang
,
L.
,
Pai
,
C.-L.
,
Boyce
,
M. C.
, and
Rutledge
,
G. C.
,
2009
, “
Wrinkled Surface Topographies of Electrospun Polymer Fibers
,”
Appl. Phys. Lett.
,
94
(
15
), p.
151916
.
13.
Huang
,
Z.-M.
,
Zhang
,
Y.-Z.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
,
2003
, “
A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites
,”
Compos. Sci. Technol.
,
63
(
15
), pp.
2223
2253
.
14.
Stylianopoulos
,
T.
,
Bashur
,
C. A.
,
Goldstein
,
A. S.
,
Guelcher
,
S. A.
, and
Barocas
,
V. H.
,
2008
, “
Computational Predictions of the Tensile Properties of Electrospun Fibre Meshes: Effect of Fibre Diameter and Fibre Orientation
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
4
), pp.
326
335
.
15.
Nasouri
,
K.
,
Bahrambeygi
,
H.
,
Rabbi
,
A.
,
Shoushtari
,
A. M.
, and
Kaflou
,
A.
,
2012
, “
Modeling and Optimization of Electrospun PAN Nanofiber Diameter Using Response Surface Methodology and Artificial Neural Networks
,”
J. Appl. Polym. Sci.
,
126
(
1
), pp.
127
135
.
16.
Rodney
,
D.
,
Gadot
,
B.
,
Martinez
,
O. R.
,
du Roscoat
,
S. R.
, and
Orgeas
,
L.
,
2016
, “
Reversible Dilatancy in Entangled Single-Wire Materials
,”
Nat. Mater.
,
15
(
1
), pp.
72
77
.
17.
Picu
,
R. C.
,
2011
, “
Mechanics of Random Fiber Networks: A Review
,”
Soft Matter
,
7
(
15
), pp.
6768
6785
.
18.
Chaudhuri
,
O.
,
Parekh
,
S. H.
, and
Fletcher
,
D. A.
,
2007
, “
Reversible Stress Softening of Actin Networks
,”
Nature
,
445
(
7125
), pp.
295
298
.
19.
Ridruejo
,
A.
,
González
,
C.
, and
LLorca
,
J.
,
2011
, “
Micromechanisms of Deformation and Fracture of Polypropylene Nonwoven Fabrics
,”
Int. J. Solids Struct.
,
48
(
1
), pp.
153
162
.
20.
Chen
,
Y.
,
Ridruejo
,
A.
,
González
,
C.
,
Llorca
,
J.
, and
Siegmund
,
T.
,
2016
, “
Notch Effect in Failure of Fiberglass Non-Woven Materials
,”
Int. J. Solids Struct.
,
96
, pp.
254
264
.
21.
Ceretti
,
E.
,
Ginestra
,
P. S.
,
Ghazinejad
,
M.
,
Fiorentino
,
A.
, and
Madou
,
M.
,
2017
, “
Electrospinning and Characterization of Polymer–Graphene Powder Scaffolds
,”
CIRP Ann.
,
66
(
1
), pp.
233
236
.
22.
Choi
,
W.
,
Lee
,
S.
,
Kim
,
S. H.
, and
Jang
,
J. H.
,
2016
, “
Polydopamine Inter‐Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges
,”
Macromol. Biosci.
,
16
(
6
), pp.
824
835
.
23.
Zussman
,
E.
,
Burman
,
M.
,
Yarin
,
A.
,
Khalfin
,
R.
, and
Cohen
,
Y.
,
2006
, “
Tensile Deformation of Electrospun Nylon‐6, 6 Nanofibers
,”
J. Polym. Sci. Part B: Polym. Phys.
,
44
(
10
), pp.
1482
1489
.
24.
Maksimcuka
,
J.
,
Obata
,
A.
,
Sampson
,
W. W.
,
Blanc
,
R.
,
Gao
,
C.
,
Withers
,
P. J.
,
Tsigkou
,
O.
,
Kasuga
,
T.
,
Lee
,
P. D.
, and
Poologasundarampillai
,
G.
,
2017
, “
X-Ray Tomographic Imaging of Tensile Deformation Modes of Electrospun Biodegradable Polyester Fibres
,”
Front. Mater.
,
4
, p.
43
.
25.
Zhang
,
X.
, and
Chase
,
G. G.
,
2016
, “
Electrospun Elastic Acrylonitrile Butadiene Copolymer Fibers
,”
Polymer
,
97
, pp.
440
448
.
26.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
,
2002
, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
,
60
(
4
), pp.
613
621
.
27.
Yin
,
Y.
,
Pan
,
Z.
, and
Xiong
,
J.
,
2018
, “
A Tensile Constitutive Relationship and a Finite Element Model of Electrospun Nanofibrous Mats
,”
Nanomaterials
,
8
(
1
), p.
29
.
28.
Stylianopoulos
,
T.
,
Kokonou
,
M.
,
Michael
,
S.
,
Tryfonos
,
A.
,
Rebholz
,
C.
,
Odysseos
,
A. D.
, and
Doumanidis
,
C.
,
2012
, “
Tensile Mechanical Properties and Hydraulic Permeabilities of Electrospun Cellulose Acetate Fiber Meshes
,”
J. Biomed. Mater. Res. Part B: Appl. Biomater.
,
100
(
8
), pp.
2222
2230
.
29.
Kumar
,
V.
, and
Rawal
,
A.
,
2017
, “
Elastic Moduli of Electrospun Mats: Importance of Fiber Curvature and Specimen Dimensions
,”
J. Mech. Behav. Biomed. Mater.
,
72
, pp.
6
13
.
30.
Ban
,
E.
,
Barocas
,
V. H.
,
Shephard
,
M. S.
, and
Picu
,
C. R.
,
2016
, “
Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices
,”
ASME J. Appl. Mech.
,
83
(
4
), p.
041008
.
31.
Wang
,
C.
,
Wang
,
L. F.
, and
Xu
,
Z. P.
,
2013
, “
Enhanced Mechanical Properties of Carbon Nanotube Networks by Mobile and Discrete Binders
,”
Carbon
,
64
, pp.
237
244
.
32.
Wang
,
C.
,
Xie
,
B.
,
Liu
,
Y. L.
, and
Xu
,
Z. P.
,
2012
, “
Mechanotunable Microstructures of Carbon Nanotube Networks
,”
Acs Macro. Lett.
,
1
(
10
), pp.
1176
1179
.
33.
Wei
,
X.
,
Xia
,
Z.
,
Wong
,
S.-C.
, and
Baji
,
A.
,
2009
, “
Modelling of Mechanical Properties of Electrospun Nanofibre Network
,”
Int. J. Exp. Comput. Biomech.
,
1
(
1
), pp.
45
57
.
34.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc., Interface
,
3
(
6
), pp.
15
35
.
35.
Silberstein
,
M. N.
,
Pai
,
C. L.
,
Rutledge
,
G. C.
, and
Boyce
,
M. C.
,
2012
, “
Elastic-Plastic Behavior of Non-Woven Fibrous Mats
,”
J. Mech. Phys. Solids
,
60
(
2
), pp.
295
318
.
36.
Planas
,
J.
,
Guinea
,
G.
, and
Elices
,
M.
,
2007
, “
Constitutive Model for Fiber-Reinforced Materials With Deformable Matrices
,”
Phys. Rev. E
,
76
(
Pt 1
), p.
041903
.
37.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
2981
2990
.
38.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.
39.
Shahsavari
,
A. S.
, and
Picu
,
R. C.
,
2013
, “
Size Effect on Mechanical Behavior of Random Fiber Networks
,”
Int. J. Solids Struct.
,
50
(
20–21
), pp.
3332
3338
.
40.
Berkache
,
K.
,
Deogekar
,
S.
,
Goda
,
I.
,
Picu
,
R.
, and
Ganghoffer
,
J.-F.
,
2017
, “
Construction of Second Gradient Continuum Models for Random Fibrous Networks and Analysis of Size Effects
,”
Compos. Struct.
,
181
, pp.
347
357
.
41.
Pan
,
F.
,
Chen
,
Y. L.
, and
Qin
,
Q. H.
,
2016
, “
Stiffness Thresholds of Buckypapers Under Arbitrary Loads
,”
Mech. Mater.
,
96
, pp.
151
168
.
42.
Chen
,
Y. L.
,
Pan
,
F.
,
Guo
,
Z. Y.
,
Liu
,
B.
, and
Zhang
,
J. Y.
,
2015
, “
Stiffness Threshold of Randomly Distributed Carbon Nanotube Networks
,”
J. Mech. Phys. Solids
,
84
, pp.
395
423
.
43.
Zündel
,
M.
,
Mazza
,
E.
, and
Ehret
,
A. E.
,
2017
, “
A 2.5 D Approach to the Mechanics of Electrospun Fibre Mats
,”
Soft Matter
,
13
(
37
), pp.
6407
6421
.
44.
Lu
,
Z. X.
,
Yuan
,
Z. S.
, and
Liu
,
Q.
,
2014
, “
3D Numerical Simulation for the Elastic Properties of Random Fiber Composites With a Wide Range of Fiber Aspect Ratios
,”
Comput. Mater. Sci.
,
90
, pp.
123
129
.
45.
Zhang
,
Y.
,
Lu
,
Z.
,
Yang
,
Z.
,
Zhang
,
D.
,
Shi
,
J.
,
Yuan
,
Z.
, and
Liu
,
Q.
,
2017
, “
Compression Behaviors of Carbon-Bonded Carbon Fiber Composites: Experimental and Numerical Investigations
,”
Carbon
,
116
, pp.
398
408
.
46.
Islam
,
M.
,
Tudryn
,
G. J.
, and
Picu
,
C. R.
,
2016
, “
Microstructure Modeling of Random Composites With Cylindrical Inclusions Having High Volume Fraction and Broad Aspect Ratio Distribution
,”
Comput. Mater. Sci.
,
125
, pp.
309
318
.
47.
Islam
,
M.
, and
Picu
,
R.
,
2018
, “
Effect of Network Architecture on the Mechanical Behavior of Random Fiber Networks
,”
ASME J. Appl. Mech.
,
85
(
8
), p.
081011
.
48.
Ostoja-Starzewski
,
M.
,
2007
,
Microstructural Randomness and Scaling in Mechanics of Materials
,
Chapman and Hall/CRC
,
Boca Raton, FL
.
49.
Ostoja-Starzewski
,
M.
,
2005
, “
Scale Effects in Plasticity of Random Media: Status and Challenges
,”
Int. J. Plasticity
,
21
(
6
), pp.
1119
1160
.
50.
Beachley
,
V.
, and
Wen
,
X.
,
2009
, “
Effect of Electrospinning Parameters on the Nanofiber Diameter and Length
,”
Mater. Sci. Eng.: C
,
29
(
3
), pp.
663
668
.
51.
Deogekar
,
S.
, and
Picu
,
R.
,
2018
, “
On the Strength of Random Fiber Networks
,”
J. Mech. Phys. Solids
,
116
, pp.
1
16
.
52.
Wang
,
L. F.
,
Boyce
,
M. C.
,
Wen
,
C. Y.
, and
Thomas
,
E. L.
,
2009
, “
Plastic Dissipation Mechanisms in Periodic Microframe-Structured Polymers
,”
Adv. Funct. Mater.
,
19
(
9
), pp.
1343
1350
.
53.
Danielsson
,
M.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
,
2007
, “
Micromechanics, Macromechanics and Constitutive Modeling of the Elasto-Viscoplastic Deformation of Rubber-Toughened Glassy Polymers
,”
J. Mech. Phys. Solids
,
55
(
3
), pp.
533
561
.
54.
Head
,
D. A.
,
Levine
,
A. J.
, and
MacKintosh
,
F. C.
,
2003
, “
Distinct Regimes of Elastic Response and Deformation Modes of Cross-Linked Cytoskeletal and Semiflexible Polymer Networks
,”
Phys. Rev. E
,
68
(
6
), p.
061907
.
55.
van Oosten
,
A. S. G.
,
Vahabi
,
M.
,
Licup
,
A. J.
,
Sharma
,
A.
,
Galie
,
P. A.
,
MacKintosh
,
F. C.
, and
Janmey
,
P. A.
,
2016
, “
Uncoupling Shear and Uniaxial Elastic Moduli of Semiflexible Biopolymer Networks: Compression-Softening and Stretch-Stiffening
,”
Sci. Rep.
,
6
, p.
19270
.
56.
Buxton
,
G. A.
, and
Clarke
,
N.
,
2007
, “
‘Bending to Stretching’ Transition Disordered Networks
,”
Phys. Rev. Lett.
,
98
(
23
), p.
238103
.
57.
Onck
,
P.
,
Koeman
,
T.
,
Van Dillen
,
T.
, and
van der Giessen
,
E.
,
2005
, “
Alternative Explanation of Stiffening in Cross-Linked Semiflexible Networks
,”
Phys. Rev. Lett.
,
95
(
17
), p.
178102
.
You do not currently have access to this content.