Wrinkles in layered neo-Hookean structures were recently formulated as a Hamiltonian system by taking the thickness direction as a pseudo-time variable. This enabled an efficient and accurate numerical method to solve the eigenvalue problem for onset wrinkles. Here, we show that wrinkles in graded elastic layers can also be described as a time-varying Hamiltonian system. The connection between wrinkles and the Hamiltonian system is established through an energy method. Within the Hamiltonian framework, the eigenvalue problem of predicting wrinkles is defined by a series of ordinary differential equations with varying coefficients. By modifying the boundary conditions at the top surface, the eigenvalue problem can be efficiently and accurately solved with numerical solvers of boundary value problems. We demonstrated the accuracy of the symplectic analysis by comparing the theoretically predicted displacement eigenfunctions, critical strains, and wavelengths of wrinkles in two typical graded structures with finite element simulations.

References

References
1.
Yang
,
S.
,
Khare
,
K.
, and
Lin
,
P. C.
,
2010
, “
Harnessing Surface Wrinkle Patterns in Soft Matter
,”
Adv. Funct. Mater.
,
20
(
16
), pp.
2550
2564
.
2.
Li
,
B.
,
Cao
,
Y.-P.
,
Feng
,
X.-Q.
, and
Gao
,
H.
,
2012
, “
Mechanics of Morphological Instabilities and Surface Wrinkling in Soft Materials: A Review
,”
Soft Matter
,
8
(
21
), pp.
5728
5745
.
3.
Wang
,
Q.
, and
Zhao
,
X.
,
2016
, “
Beyond Wrinkles: Multimodal Surface Instabilities for Multifunctional Patterning
,”
MRS Bull
,
41
(
2
), pp.
115
122
.
4.
Genzer
,
J.
, and
Groenewold
,
J.
,
2006
, “
Soft Matter With Hard Skin: From Skin Wrinkles to Templating and Material Characterization
,”
Soft Matter
,
2
(
4
), pp.
310
323
.
5.
Budday
,
S.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2014
, “
The Role of Mechanics During Brain Development
,”
J. Mech. Phys. Solids
,
72
, pp.
75
92
.
6.
Tallinen
,
T.
,
Chung
,
J. Y.
,
Biggins
,
J. S.
, and
Mahadevan
,
L.
,
2014
, “
Gyrification From Constrained Cortical Expansion
,”
Proc. Natl. Acad. Sci. U.S.A
,
111
(
35
), pp.
12667
12672
.
7.
Tallinen
,
T.
,
Chung
,
J. Y.
,
Rousseau
,
F.
,
Girard
,
N.
,
Lefèvre
,
J.
, and
Mahadevan
,
L.
,
2016
, “
On the Growth and Form of Cortical Convolutions
,”
Nat. Phys.
,
12
(
6
), p.
588
.
8.
Yin
,
J.
,
Cao
,
Z.
,
Li
,
C.
,
Sheinman
,
I.
, and
Chen
,
X.
,
2008
, “
Stress-Driven Buckling Patterns in Spheroidal Core/Shell Structures
,”
Proc. Natl. Acad. Sci. U.S.A
,
105
(
49
), pp.
19132
19135
.
9.
Yin
,
J.
,
Chen
,
X.
, and
Sheinman
,
I.
,
2009
, “
Anisotropic Buckling Patterns in Spheroidal Film/Substrate Systems and Their Implications in Some Natural and Biological Systems
,”
J. Mech. Phys. Solids
,
57
(
9
), pp.
1470
1484
.
10.
Breid
,
D.
, and
Crosby
,
A. J.
,
2011
, “
Effect of Stress State on Wrinkle Morphology
,”
Soft Matter
,
7
(
9
), pp.
4490
4496
.
11.
Kim
,
D.-H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y.-S.
,
Kim
,
R.-H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
, and
Islam
,
A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
12.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), p.
1603
.
13.
Guvendiren
,
M.
,
Yang
,
S.
, and
Burdick
,
J. A.
,
2009
, “
Swelling‐Induced Surface Patterns in Hydrogels With Gradient Crosslinking Density
,”
Adv. Funct. Mater.
,
19
(
19
), pp.
3038
3045
.
14.
Kang
,
M. K.
, and
Huang
,
R.
,
2010
, “
Swell-Induced Surface Instability of Confined Hydrogel Layers on Substrates
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1582
1598
.
15.
Toh
,
W.
,
Ding
,
Z.
,
Yong Ng
,
T.
, and
Liu
,
Z.
,
2015
, “
Wrinkling of a Polymeric Gel During Transient Swelling
,”
ASME J. Appl. Mech.
,
82
(
6
), p.
061004
.
16.
Amar
,
M. B.
, and
Ciarletta
,
P.
,
2010
, “
Swelling Instability of Surface-Attached Gels as a Model of Soft Tissue Growth Under Geometric Constraints
,”
J. Mech. Phys. Solids
,
58
(
7
), pp.
935
954
.
17.
Glatz
,
B. A.
,
Tebbe
,
M.
,
Kaoui
,
B.
,
Aichele
,
R.
,
Kuttner
,
C.
,
Schedl
,
A. E.
,
Schmidt
,
H.-W.
,
Zimmermann
,
W.
, and
Fery
,
A.
,
2015
, “
Hierarchical Line-Defect Patterns in Wrinkled Surfaces
,”
Soft Matter
,
11
(
17
), pp.
3332
3339
.
18.
Lee
,
D.
,
Triantafyllidis
,
N.
,
Barber
,
J. R.
, and
Thouless
,
M. D.
,
2008
, “
Surface Instability of an Elastic Half Space With Material Properties Varying With Depth
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
858
868
.
19.
Diab
,
M.
,
Zhang
,
T.
,
Zhao
,
R.
,
Gao
,
H.
, and
Kim
,
K.-S.
,
2013
, “
Ruga Mechanics of Creasing: From Instantaneous to Setback Creases
,”
Proc. R. Soc. A.
,
469
(
2157
), p. 20120753.
20.
Diab
,
M.
, and
Kim
,
K.-S.
,
2014
, “
Ruga-Formation Instabilities of a Graded Stiffness Boundary Layer in a neo-Hookean Solid
,”
Proc. R. Soc. A
,
470
(
2168
), p.
20140218
.
21.
Wu
,
Z.
,
Meng
,
J.
,
Liu
,
Y.
,
Li
,
H.
, and
Huang
,
R.
,
2014
, “
A State Space Method for Surface Instability of Elastic Layers With Material Properties Varying in Thickness Direction
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081003
.
22.
Zhang
,
T.
,
2017
, “
Symplectic Analysis for Wrinkles: A Case Study of Layered Neo-Hookean Structures
,”
ASME J. Appl. Mech.
,
84
(
7
), p.
071002
.
23.
Zhong
,
W.
, and
Williams
,
F. W.
,
1993
, “
Physical Interpretation of the Symplectic Orthogonality of the Eigensolutions of a Hamiltonian or Symplectic Matrix
,”
Comput. Struct.
,
49
(
4
), pp.
749
750
.
24.
Zhong
,
W.
, and
Wei-an
,
Y.
,
1999
, “
New Solution System for Plate Bending and Its Application
,”
Acta Mech. Sini.
, 31(2), pp. 173–184.
25.
Zhong
,
W.
,
2001
, “
Symplectic Energy Band Analysis for Periodical Electromagnetic Waveguide
,”
J. Comput. Mech.
,
18
(
4
), pp.
379
387
.
26.
Zhang
,
H.
, and
Zhong
,
W.
,
2003
, “
Hamiltonian Principle Based Stress Singularity Analysis Near Crack Corners of Multi-Material Junctions
,”
Int. J. Solids Struct.
,
40
(
2
), pp.
493
510
.
27.
Yao
,
W.
,
Zhong
,
W.
, and
Lim
,
C. W.
,
2009
,
Symplectic Elasticity
,
World Scientific
, Singapore.
28.
Peng
,
H.
,
Gao
,
Q.
,
Wu
,
Z.
, and
Zhong
,
W.
,
2012
, “
Symplectic Approaches for Solving Two-Point Boundary-Value Problems
,”
J. Guid. Control. Dyn
,
35
(
2
), pp.
653
659
.
29.
Hu
,
X.
, and
Yao
,
W.
,
2011
, “
A Novel Singular Finite Element on Mixed-Mode Bimaterial Interfacial Cracks With Arbitrary Crack Surface Tractions
,”
Int. J. Fract.
,
172
(
1
), pp.
41
52
.
30.
Zhou
,
Z.
,
Xu
,
X.
,
Leung
,
A. Y.
, and
Huang
,
Y.
,
2013
, “
Stress Intensity Factors and T-Stress for an Edge Interface Crack by Symplectic Expansion
,”
Eng. Fract. Mech.
,
102
, pp.
334
347
.
31.
Xu
,
X.
,
Ma
,
Y.
,
Lim
,
C.
, and
Chu
,
H.
,
2006
, “
Dynamic Buckling of Cylindrical Shells Subject to an Axial Impact in a Symplectic System
,”
Int. J. Solids Struct.
,
43
(
13
), pp.
3905
3919
.
32.
Li
,
R.
,
Tian
,
Y.
,
Wang
,
P.
,
Shi
,
Y.
, and
Wang
,
B.
,
2016
, “
New Analytic Free Vibration Solutions of Rectangular Thin Plates Resting on Multiple Point Supports
,”
Int. J. Mech. Sci.
,
110
, pp.
53
61
.
33.
Li
,
R.
,
Zheng
,
X.
,
Wang
,
H.
,
Xiong
,
S.
,
Yan
,
K.
, and
Li
,
P.
,
2018
, “
New Analytic Buckling Solutions of Rectangular Thin Plates With All Edges Free
,”
Int. J. Mech. Sci.
,
144
, pp.
67
73
.
34.
Wang
,
B.
,
Li
,
P.
, and
Li
,
R.
,
2016
, “
Symplectic Superposition Method for New Analytic Buckling Solutions of Rectangular Thin Plates
,”
Int. J. Mech. Sci.
,
119
, pp.
432
441
.
35.
Liu
,
L.
, and
Bhattacharya
,
K.
,
2009
, “
Wave Propagation in a Sandwich Structure
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3290
3300
.
36.
Qiang
,
G.
,
Zhong
,
W.
, and
Howson
,
W.
,
2004
, “
A Precise Method for Solving Wave Propagation Problems in Layered Anisotropic Media
,”
Wave Motion
,
40
(
3
), pp.
191
207
.
37.
Gao
,
Q.
,
Lin
,
J.
,
Zhong
,
W.
,
Howson
,
W. P.
, and
Williams
,
F. W.
,
2006
, “
A Precise Numerical Method for Rayleigh Waves in a Stratified Half Space
,”
Int. J. Numer. Methods Eng.
,
67
(
6
), pp.
771
786
.
38.
Biot
,
M. A.
,
1965
,
Mechanics of Incremental Deformations
,
Wiley
,
New York
.
39.
Huang
,
Z. Y.
,
Hong
,
W.
, and
Suo
,
Z.
,
2005
, “
Nonlinear Analyses of Wrinkles in a Film Bonded to a Compliant Substrate
,”
J. Mech. Phys. Solids
,
53
(
9
), pp.
2101
2118
.
40.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031019
.
41.
Zhao
,
R.
,
Zhang
,
T.
,
Diab
,
M.
,
Gao
,
H.
, and
Kim
,
K.-S.
,
2015
, “
The Primary Bilayer Ruga-Phase Diagram I: Localizations in Ruga Evolution
,”
Extreme Mech. Lett.
,
4
, pp.
76
82
.
42.
Cai
,
S.
,
Breid
,
D.
,
Crosby
,
A. J.
,
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
2011
, “
Periodic Patterns and Energy States of Buckled Films on Compliant Substrates
,”
J. Mech. Phys. Solids
,
59
(
5
), pp.
1094
1114
.
43.
Brau
,
F.
,
Vandeparre
,
H.
,
Sabbah
,
A.
,
Poulard
,
C.
,
Boudaoud
,
A.
, and
Damman
,
P.
,
2011
, “
Multiple-Length-Scale Elastic Instability Mimics Parametric Resonance of Nonlinear Oscillators
,”
Nat. Phys.
,
7
(
1
), pp.
56
60
.
44.
Sun
,
J.-Y.
,
Xia
,
S.
,
Moon
,
M.-W.
,
Oh
,
K. H.
, and
Kim
,
K.-S.
,
2012
, “
Folding Wrinkles of a Thin Stiff Layer on a Soft Substrate
,”
Proc. R. Soc. A
,
468
(
2140
), pp.
932
953
.
45.
Zang
,
J.
,
Zhao
,
X.
,
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Localized Ridge Wrinkling of Stiff Films on Compliant Substrates
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1265
1279
.
46.
Jin
,
L.
,
Takei
,
A.
, and
Hutchinson
,
J. W.
,
2015
, “
Mechanics of Wrinkle/Ridge Transitions in Thin Film/Substrate Systems
,”
J. Mech. Phys. Solids
,
81
, pp.
22
40
.
47.
Jin
,
L.
,
Auguste
,
A.
,
Hayward
,
R. C.
, and
Suo
,
Z.
,
2015
, “
Bifurcation Diagrams for the Formation of Wrinkles or Creases in Soft Bilayers
,”
ASME J. Appl. Mech.
,
82
(
6
), p.
061008
.
48.
Budday
,
S.
,
Kuhl
,
E.
, and
Hutchinson
,
J. W.
,
2015
, “
Period-Doubling and Period-Tripling in Growing Bilayered Systems
,”
Philos. Mag.
,
95
(
28–30
), pp.
3208
3224
.
49.
Fu
,
Y.
, and
Cai
,
Z.
,
2015
, “
An Asymptotic Analysis of the Period-Doubling Secondary Bifurcation in a Film/Substrate Bilayer
,”
SIAM J. Appl. Math.
,
75
(
6
), pp.
2381
2395
.
50.
Zhao
,
R.
, and
Zhao
,
X.
,
2017
, “
Multimodal Surface Instabilities in Curved Film–Substrate Structures
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081001
.
51.
Li
,
B.
,
Jia
,
F.
,
Cao
,
Y. P.
,
Feng
,
X. Q.
, and
Gao
,
H.
,
2011
, “
Surface Wrinkling Patterns on a Core-Shell Soft Sphere
,”
Phys. Rev. Lett.
,
106
(
23
), p.
234301
.
52.
Cao
,
Y. P.
,
Li
,
B.
, and
Feng
,
X. Q.
,
2012
, “
Surface Wrinkling and Folding of Core–Shell Soft Cylinders
,”
Soft Matter
,
8
(
2
), pp.
556
562
.
53.
Ciarletta
,
P.
,
Balbi
,
V.
, and
Kuhl
,
E.
,
2014
, “
Pattern Selection in Growing Tubular Tissues
,”
Phys. Rev. Lett.
,
113
(
24
), p.
248101
.
54.
Stoop
,
N.
,
Lagrange
,
R.
,
Terwagne
,
D.
,
Reis
,
P. M.
, and
Dunkel
,
J.
,
2015
, “
Curvature-Induced Symmetry Breaking Determines Elastic Surface Patterns
,”
Nat. Mater.
,
14
(
3
), pp.
337
342
.
55.
Xu
,
F.
, and
Potier-Ferry
,
M.
,
2016
, “
On Axisymmetric/Diamond-like Mode Transitions in Axially Compressed Core–Shell Cylinders
,”
J. Mech. Phys. Solids
,
94
, pp.
68
87
.
You do not currently have access to this content.