Bio-inspired functional surfaces attract many research interests due to the promising applications. In this paper, tunable adhesion of a bio-inspired micropillar arrayed surface actuated by a magnetic field is investigated theoretically in order to disclose the mechanical mechanism of changeable adhesion and the influencing factors. Each polydimethylsiloxane (PDMS) micropillar reinforced by uniformly distributed magnetic particles is assumed to be a cantilever beam. The beam's large elastic deformation is obtained under an externally magnetic field. Specially, the rotation angle of the pillar's end is predicted, which shows an essential effect on the changeable adhesion of the micropillar arrayed surface. The larger the strength of the applied magnetic field, the larger the rotation angle of the pillar's end will be, yielding a decreasing adhesion force of the micropillar arrayed surface. The difference of adhesion force tuned by the applied magnetic field can be a few orders of magnitude, which leads to controllable adhesion of such a micropillar arrayed surface. Influences of each pillar's cross section shape, size, intervals between neighboring pillars, and the distribution pattern on the adhesion force are further analyzed. The theoretical predictions are qualitatively well consistent with the experimental measurements. The present theoretical results should be helpful not only for the understanding of mechanical mechanism of tunable adhesion of micropillar arrayed surface under a magnetic field but also for further precise and optimal design of such an adhesion-controllable bio-inspired surface in future practical applications.

References

References
1.
Gorb
,
S.
, and
Scherge
,
M.
,
2000
, “
Biological Microtribology: Anisotropy in Frictional Forces of Orthopteran Attachment Pads Reflects the Ultrastructure of a Highly Deformable Material
,”
Proc. R. Soc. B
,
267
(
1449
), pp.
1239
1244
.
2.
Federle
,
W.
,
Brainerd
,
E. L.
,
McMahon
,
T. A.
, and
Holldobler
,
B.
,
2001
, “
Biomechanics of the Movable Pretarsal Adhesive Organ in Ants and Bees
,”
Proc. Natl. Acad. Sci. U. S. A.
,
98
(
11
), pp.
6215
6220
.
3.
Federle
,
W.
,
Baumgartner
,
W.
, and
Holldobler
,
B.
,
2004
, “
Biomechanics of Ant Adhesive Pads: Frictional Forces are Rate- and Temperature-Dependent
,”
J. Exp. Biol.
,
207
(
Pt. 1
), pp.
67
74
.
4.
Arzt
,
E.
,
Gorb
,
S.
, and
Spolenak
,
R.
,
2003
, “
From Micro to Nano Contacts in Biological Attachment Devices
,”
Proc. Natl. Acad. Sci. U. S. A.
,
100
(
19
), pp.
10603
10606
.
5.
Autumn
,
K.
, and
Gravish
,
N.
,
2008
, “
Gecko Adhesion: Evolutionary Nanotechnology
,”
Philos. Trans. R. Soc. A
,
366
(
1870
), pp.
1575
1590
.
6.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
T. W.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
.
7.
Autumn
,
K.
,
Sitti
,
M.
,
Liang
,
Y. A.
,
Peattie
,
A. M.
,
Hansen
,
W. R.
,
Sponberg
,
S.
,
Kenny
,
T. W.
,
Fearing
,
R.
,
Israelachvili
,
J. N.
, and
Full
,
R. J.
,
2002
, “
Evidence for Van Der Waals Adhesion in Gecko Setae
,”
Proc. Natl. Acad. Sci. U. S. A.
,
99
(
19
), pp.
12252
12256
.
8.
Huber
,
G.
,
Mantz
,
H.
,
Spolenak
,
R.
,
Mecke
,
K.
,
Jacobs
,
K.
,
Gorb
,
S. N.
, and
Arzt
,
E.
,
2005
, “
Evidence for Capillarity Contributions to Gecko Adhesion From Single Spatula Nanomechanical Measurements
,”
Proc. Natl. Acad. Sci. U. S. A.
,
102
(
45
), pp.
16293
16296
.
9.
Sun
,
W. X.
,
Neuzil
,
P.
,
Kustandi
,
T. S.
,
Oh
,
S.
, and
Samper
,
V. D.
,
2005
, “
The Nature of the Gecko Lizard Adhesive Force
,”
Biophys. J.
,
89
(
2
), pp.
L14
L17
.
10.
Izadi
,
H.
,
Stewart
,
K. M.
, and
Penlidis
,
A.
,
2014
, “
Role of Contact Electrification and Electrostatic Interactions in Gecko Adhesion
,”
J. R. Soc. Interface
,
11
(
98
), p.
20140371
.
11.
Chen
,
S. H.
, and
Gao
,
H. J.
,
2007
, “
Bio-Inspired Mechanics of Reversible Adhesion: Orientation-Dependent Adhesion Strength for Non-Slipping Adhesive Contact With Transversely Isotropic Elastic Materials
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
1001
1015
.
12.
Chen
,
S. H.
,
Yan
,
C.
,
Zhang
,
P.
, and
Gao
,
H. J.
,
2009
, “
Mechanics of Adhesive Contact on a Power-Law Graded Elastic Half-Space
,”
J. Mech. Phys. Solids
,
57
(
9
), pp.
1437
1448
.
13.
Gao
,
H. J.
,
Wang
,
X.
,
Yao
,
H. M.
,
Gorb
,
S.
, and
Arzt
,
E.
,
2005
, “
Mechanics of Hierarchical Adhesion Structures of Geckos
,”
Mech. Mater
,
37
(
2–3
), pp.
275
285
.
14.
Chen
,
B.
,
Wu
,
P. D.
, and
Gao
,
H. J.
,
2008
, “
Hierarchical Modelling of Attachment and Detachment Mechanisms of Gecko Toe Adhesion
,”
Proc. R. Soc. A
,
464
(
2094
), pp.
1639
1652
.
15.
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2012
, “
Effect of Pre-Tension on the Peeling Behavior of a Bio-Inspired Nano-Film and a Hierarchical Adhesive Structure
,”
Appl. Phys. Lett.
,
101
(
16
), p.
163702
.
16.
Lee
,
J. H.
,
Fearing
,
R. S.
, and
Komvopoulos
,
K.
,
2008
, “
Directional Adhesion of Gecko-Inspired Angled Microfiber Arrays
,”
Appl. Phys. Lett.
,
93
(
19
), p.
191910
.
17.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling - Elastic Term
,”
J. Phys. D Appl. Phys.
,
8
(
13
), pp.
1449
1452
.
18.
Autumn
,
K.
,
Dittmore
,
A.
,
Santos
,
D.
,
Spenko
,
M.
, and
Cutkosky
,
M.
,
2006
, “
Frictional Adhesion: A New Angle on Gecko Attachment
,”
J. Exp. Biol.
,
209
(
Pt. 18
), pp.
3569
3579
.
19.
Tian
,
Y.
,
Pesika
,
N.
,
Zeng
,
H. B.
,
Rosenberg
,
K.
,
Zhao
,
B. X.
,
McGuiggan
,
P.
,
Autumn
,
K.
, and
Israelachvili
,
J.
,
2006
, “
Adhesion and Friction in Gecko Toe Attachment and Detachment
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
51
), pp.
19320
19325
.
20.
Peng
,
Z. L.
,
Chen
,
S. H.
, and
Soh
,
A. K.
,
2010
, “
Peeling Behavior of a Bio-Inspired Nano-Film on a Substrate
,”
Int. J. Solids Struct.
,
47
(
14–15
), pp.
1952
1960
.
21.
Chen
,
B.
,
Wu
,
P. D.
, and
Gao
,
H. J.
,
2009
, “
Pre-Tension Generates Strongly Reversible Adhesion of a Spatula Pad on Substrate
,”
J. R. Soc. Interface
,
6
(
35
), pp.
529
537
.
22.
Stark
,
A. Y.
,
Klittich
,
M. R.
,
Sitti
,
M.
,
Niewiarowski
,
P. H.
, and
Dhinojwala
,
A.
,
2016
, “
The Effect of Temperature and Humidity on Adhesion of a Gecko-Inspired Adhesive: Implications for the Natural System
,”
Sci. Rep.
,
6
, p.
30936
.
23.
Stark
,
A. Y.
,
Badge
,
I.
,
Wucinich
,
N. A.
,
Sullivan
,
T. W.
,
Niewiarowski
,
P. H.
, and
Dhinojwala
,
A.
,
2013
, “
Surface Wettability Plays a Significant Role in Gecko Adhesion Underwater
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
16
), pp.
6340
6345
.
24.
Xu
,
Q.
,
Wan
,
Y. Y.
,
Hu
,
T. S.
,
Liu
,
T. X.
,
Tao
,
D. S.
,
Niewiarowski
,
P. H.
,
Tian
,
Y.
,
Liu
,
Y.
,
Dai
,
L. M.
,
Yang
,
Y. Q.
, and
Xia
,
Z. H.
,
2015
, “
Robust Self-Cleaning and Micromanipulation Capabilities of Gecko Spatulae and Their Bio-Mimics
,”
Nat. Commun.
,
6
, p.
8949
.
25.
Micciche
,
M.
,
Arzt
,
E.
, and
Kroner
,
E.
,
2014
, “
Single Macroscopic Pillars as Model System for Bioinspired Adhesives: Influence of Tip Dimension, Aspect Ratio, and Tilt Angle
,”
ACS Appl. Mater. Interfaces
,
6
(
10
), pp.
7076
7083
.
26.
Carbone
,
G.
, and
Pierro
,
E.
,
2013
, “
A Review of Adhesion Mechanisms of Mushroom-Shaped Microstructured Adhesives
,”
Meccanica
,
48
(
8
), pp.
1819
1833
.
27.
Aksak
,
B.
,
Sahin
,
K.
, and
Sitti
,
M.
,
2014
, “
The Optimal Shape of Elastomer Mushroom-Like Fibers for High and Robust Adhesion
,”
Beilstein. J. Nanotech.
,
5
, pp.
830
838
.https://www.beilstein-journals.org/bjnano/articles/5/74
28.
Varenberg
,
M.
,
Murarash
,
B.
,
Kligerman
,
Y.
, and
Gorb
,
S. N.
,
2011
, “
Geometry-Controlled Adhesion: Revisiting the Contact Splitting Hypothesis
,”
Appl. Phys. A Mater. Sci. Process.
,
103
(
4
), pp.
933
938
.
29.
Hu
,
H.
,
Tian
,
H. M.
,
Shao
,
J. Y.
,
Wang
,
Y.
,
Li
,
X. M.
,
Tian
,
Y.
,
Ding
,
Y. C.
, and
Lu
,
B. H.
,
2017
, “
Friction Contribution to Bioinspired Mushroom-Shaped Dry Adhesives
,”
Adv. Mater. Interfaces
,
4
(
9
), p.
1700016
.
30.
Murphy
,
M. P.
,
Kim
,
S.
, and
Sitti
,
M.
,
2009
, “
Enhanced Adhesion by Gecko-Inspired Hierarchical Fibrillar Adhesives
,”
ACS Appl. Mater. Interfaces
,
1
(
4
), pp.
849
855
.
31.
Tao
,
D. S.
,
Gao
,
X.
,
Lu
,
H. Y.
,
Liu
,
Z. Y.
,
Li
,
Y.
,
Tong
,
H.
,
Pesika
,
N.
,
Meng
,
Y. G.
, and
Tian
,
Y.
,
2017
, “
Controllable Anisotropic Dry Adhesion in Vacuum: Gecko Inspired Wedged Surface Fabricated With Ultraprecision Diamond Cutting
,”
Adv. Funct. Mater.
,
27
(
22
), p.
1606576
.
32.
Wu
,
X. A.
,
Christensen
,
D. L.
,
Suresh
,
S. A.
,
Jiang
,
H.
,
Roderick
,
W. R.
, and
Cutkosky
,
M.
,
2017
, “
Incipient Slip Detection and Recovery for Controllable Gecko-Inspired Adhesion
,”
IEEE Robot. Autom. Lett.
,
2
(
2
), pp.
460
467
.
33.
Jiang
,
H.
,
Hawkes
,
E. W.
,
Fuller
,
C.
,
Estrada
,
M. A.
,
Suresh
,
S. A.
,
Abcouwer
,
N.
,
Han
,
A. K.
,
Wang
,
S.
,
Ploch
,
C. J.
,
Parness
,
A.
, and
Cutkosky
,
M. R.
,
2017
, “
A Robotic Device Using Gecko-Inspired Adhesives Can Grasp and Manipulate Large Objects in Microgravity
,”
Sci. Rob.
,
2
(
7
), p.
eaan4545
.
34.
Drotlef
,
D. M.
,
Blumler
,
P.
, and
del Campo
,
A.
,
2014
, “
Magnetically Actuated Patterns for Bioinspired Reversible Adhesion (Dry and Wet)
,”
Adv. Mater.
,
26
(
5
), pp.
775
779
.
35.
Gillies
,
A. G.
,
Kwak
,
J.
, and
Fearing
,
R. S.
,
2013
, “
Controllable Particle Adhesion With a Magnetically Actuated Synthetic Gecko Adhesive
,”
Adv. Funct. Mater.
,
23
(
26
), pp.
3256
3261
.
36.
Feynman
,
R. P.
,
Leighton
,
R. B.
, and
Sands
,
M. L.
,
1965
,
The Feynman Lectures on Physics
(The Electromagnetic Field, Vol.
2
),
Addison-Wesley
, Reading, MA.
37.
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2015
, “
Effect of Bending Stiffness on the Peeling Behavior of an Elastic Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
91
(
4
), p.
042401
.
38.
Tang
,
T.
,
Jagota
,
A.
, and
Hui
,
C. Y.
,
2005
, “
Adhesion Between Single-Walled Carbon Nanotubes
,”
J. Appl. Phys.
,
97
(
7
), p. 074304.
39.
Zhang
,
C.
,
Chen
,
L.
, and
Chen
,
S. H.
,
2013
, “
Adhesion Between Two Radially Collapsed Single-Walled Carbon Nanotubes
,”
Acta Mech.
,
224
(
11
), pp.
2759
2770
.
40.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. Lond. A
,
324
(
1558
), pp.
301
313
.
41.
Gao
,
H. J.
, and
Yao
,
H. M.
,
2004
, “
Shape Insensitive Optimal Adhesion of Nanoscale Fibrillar Structures
,”
Proc. Natl. Acad. Sci. U. S. A.
,
101
(
21
), pp.
7851
7856
.
42.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C. Y.
, and
Kim
,
J.
,
2004
, “
Design of Biomimetic Fibrillar Interfaces—1: Making Contact
,”
J. R. Soc. Interface
,
1
(
1
), pp.
23
33
.
43.
Glassmaker
,
N. J.
,
Jagota
,
A.
,
Hui
,
C. Y.
,
Noderer
,
W. L.
, and
Chaudhury
,
M. K.
,
2007
, “
Biologically Inspired Crack Trapping for Enhanced Adhesion
,”
Proc. Natl. Acad. Sci. U. S. A.
,
104
(
26
), pp.
10786
10791
.
44.
Hui
,
C. Y.
,
Glassmaker
,
N. J.
,
Tang
,
T.
, and
Jagota
,
A.
,
2004
, “
Design of Biomimetic Fibrillar Interfaces—2: Mechanics of Enhanced Adhesion
,”
J. R. Soc. Interface
,
1
(
1
), pp.
35
48
.
45.
Jagota
,
A.
, and
Bennison
,
S. J.
,
2002
, “
Mechanics of Adhesion Through a Fibrillar Microstructure
,”
Integr. Comp. Biol.
,
42
(
6
), pp.
1140
1145
.
46.
Guo
,
X.
,
Jin
,
F.
, and
Gao
,
H. J.
,
2011
, “
Mechanics of Non-Slipping Adhesive Contact on a Power-Law Graded Elastic Half-Space
,”
Int. J. Solids Struct.
,
48
(
18
), pp.
2565
2575
.
47.
Jin
,
F.
,
Guo
,
X.
, and
Gao
,
H. J.
,
2013
, “
Adhesive Contact on Power-Law Graded Elastic Solids: The JKR–DMT Transition Using a Double-Hertz Model
,”
J. Mech. Phys. Solids
,
61
(
12
), pp.
2473
2492
.
48.
Jones
,
J. E.
,
1924
, “
On the Determination of Molecular Fields—II: From the Equation of State of a Gas
,”
Proc. R. Soc. London A
,
106
(
738
), pp.
463
477
.
49.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces: Revised Third Edition
,
Academic Press
, London.
50.
Greiner
,
C.
,
del Campo
,
A.
, and
Arzt
,
E.
,
2007
, “
Adhesion of Bioinspired Micropatterned Surfaces: Effects of Pillar Radius, Aspect Ratio, and Preload
,”
Langmuir
,
23
(
7
), pp.
3495
3502
.
51.
Yao
,
H. M.
, and
Gao
,
H. J.
,
2006
, “
Mechanics of Robust and Releasable Adhesion in Biology: Bottom-Up Designed Hierarchical Structures of Gecko
,”
J. Mech. Phys. Solids
,
54
(
6
), pp.
1120
1146
.
52.
Gorb
,
S.
,
Varenberg
,
M.
,
Peressadko
,
A.
, and
Tuma
,
J.
,
2007
, “
Biomimetic Mushroom-Shaped Fibrillar Adhesive Microstructure
,”
J. R. Soc. Interface
,
4
(
13
), pp.
271
275
.
53.
Liang
,
J. Z.
,
2013
, “
Reinforcement and Quantitative Description of Inorganic Particulate-Filled Polymer Composites
,”
Compos. Part B Eng.
,
51
, pp.
224
232
.
54.
Turcsányi
,
B.
,
Pukánszky
,
B.
, and
Tüdõs
,
F.
,
1988
, “
Composition Dependence of Tensile Yield Stress in Filled Polymers
,”
J. Mater. Sci. Lett.
,
7
(
2
), pp.
160
162
.
55.
Komvopoulos
,
K.
, and
Yan
,
W.
,
1997
, “
A Fractal Analysis of Stiction in Microelectromechanical Systems
,”
ASME J. Tribol.
,
119
(
3
), pp.
391
400
.
You do not currently have access to this content.