Void coalescence is known to be the last microscopic event of ductile fracture in metal alloys and corresponds to the localization of plastic flow in between voids. Limit-analysis has been used to provide coalescence criteria that have been subsequently recast into effective macroscopic yield criteria, leading to models for porous materials valid for high porosities. Such coalescence models have remained up to now restricted to cubic or hexagonal lattices of spheroidal voids. Based on the limit-analysis kinematic approach, a methodology is first proposed to get upper-bound estimates of coalescence stress for arbitrary void shapes and lattices. Semi-analytical coalescence criteria are derived for elliptic cylinder voids in elliptic cylinder unit cells for an isotropic matrix material, and validated through comparisons to numerical limit-analysis simulations. The physical application of these criteria for realistic void shapes and lattices is finally assessed numerically.

References

References
1.
Puttick
,
K. E.
,
1959
, “
Ductile Fracture in Metals
,”
Philos. Mag.
,
4
(
44
), pp.
964
969
.
2.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
,
2000
, “
An Extended Model for Void Growth and Coalescence
,”
J. Mech. Phys. Solids
,
48
(
12
), pp.
2467
2512
.
3.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
.
4.
Pineau
,
A.
,
Benzerga
,
A. A.
, and
Pardoen
,
T.
,
2016
, “
Failure of Metals I: Brittle and Ductile Fracture
,”
Acta. Mater.
,
107
, pp.
424
483
.
5.
Besson
,
J.
,
2010
, “
Continuum Models of Ductile Fracture: A Review
,”
Int. J. Damage Mech.
,
19
(
1
), pp.
3
52
.
6.
Gurson
,
A.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—Part I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mat. Technol.
,
99
(
1
), pp.
2
15
.
7.
Rousselier
,
G.
,
1981
, “
Finite Deformation Constitutive Relations Including Ductile Fracture Damage
,”
Three-Dimensional Constitutive Relations and Ductile Fracture
, North Holland, Amsterdam, The Netherlands.
8.
Ponte Castañeda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
,
39
(
1
), pp.
45
71
.
9.
Gologanu
,
M.
,
Leblond
,
J.-B.
,
Perrin
,
G.
, and
Devaux
,
J.
,
1997
, “
Recent Extension of Gurson's Model for Porous Ductile Metals
,”
Continuum Micromechanics
(CISM Lectures Series),
Springer
, Vienna, Austria, pp.
61
130
.
10.
Madou
,
K.
, and
Leblond
,
J.-B.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids—I: Limit-Analysis of Some Representative Cell
,”
J. Mech. Phys. Solids
,
60
(
5
), pp.
1020
1036
.
11.
Madou
,
K.
, and
Leblond
,
J.-B.
,
2012
, “
A Gurson-Type Criterion for Porous Ductile Solids Containing Arbitrary Ellipsoidal Voids—II: Determination of Yield Criterion Parameters
,”
J. Mech. Phys. Solids
,
60
(
5
), pp.
1037
1058
.
12.
Benzerga
,
A. A.
, and
Besson
,
J.
,
2001
, “
Plastic Potentials for Anisotropic Porous Solids
,”
Eur. J. Mech. A/Solids
,
20
(
3
), pp.
397
434
.
13.
Han
,
X.
,
Besson
,
J.
,
Forest
,
S.
,
Tanguy
,
B.
, and
Bugat
,
S.
,
2013
, “
A Yield Function for Single Crystals Containing Voids
,”
Int. J. Solids Struct.
,
50
(
14–15
), pp.
2115
2131
.
14.
Paux
,
J.
,
Morin
,
L.
,
Brenner
,
R.
, and
Kondo
,
D.
,
2015
, “
An Approximate Yield Criterion for Porous Single Crystals
,”
Eur. J. Mech. A/Solids
,
51
, pp.
1
10
.
15.
Morin
,
L.
,
Leblond
,
J.
, and
Kondo
,
D.
,
2015
, “
A Gurson-Type Criterion for Plastically Anisotropic Solids Containing Arbitrary Ellipsoidal Voids
,”
Int. J. Solids Struct.
,
77
, pp.
86
101
.
16.
Mbiakop
,
A.
,
Constantinescu
,
A.
, and
Danas
,
K.
,
2015
, “
An Analytical Model for Porous Single Crystals With Ellipsoidal Voids
,”
J. Mech. Phys. Solids
,
84
, pp.
436
467
.
17.
Song
,
D.
, and
Ponte Castañeda
,
P.
,
2017
, “
A Finite-Strain Homogenization Model for Viscoplastic Porous Single Crystals—I: Theory
,”
J. Mech. Phys. Solids
,
107
, pp.
560
579
.
18.
Thomason
,
P. F.
,
1968
, “
A Theory for Ductile Fracture by Internal Necking of Cavities
,”
J. Inst. Met.
,
96
, p.
360
.
19.
Thomason
,
P. F.
,
1985
, “
Three-Dimensional Models for the Plastic Limit-Loads at Incipient Failure of the Intervoid Matrix in Ductile Porous Solids
,”
Acta. Metall.
,
33
(
6
), pp.
1079
1085
.
20.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
2004
, “
Anisotropic Ductile Failure—Part I: Experiments
,”
Acta Mater.
,
52
(
15
), pp.
4623
4638
.
21.
Benzerga
,
A. A.
,
2002
, “
Micromechanics of Coalescence in Ductile Fracture
,”
J. Mech. Phys. Solids
,
50
(
6
), pp.
1331
1362
.
22.
Weck
,
A.
, and
Wilkinson
,
D.
,
2008
, “
Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes
,”
Acta Mater.
,
56
(
8
), pp.
1774
1784
.
23.
Weck
,
A.
,
Wilkinson
,
D.
,
Maire
,
E.
, and
Toda
,
H.
,
2008
, “
Visualization by X-Ray Tomography of Void Growth and Coalescence Leading to Fracture in Model Materials
,”
Acta Mater.
,
56
(
12
), pp.
2919
2928
.
24.
Scheyvaerts
,
F.
,
Onck
,
P.
,
Tekoğlu
,
C.
, and
Pardoen
,
T.
,
2011
, “
The Growth and Coalescence of Ellipsoidal Voids in Plane Strain Under Combined Shear and Tension
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
373
397
.
25.
Fabrègue
,
D.
, and
Pardoen
,
T.
,
2008
, “
A Constitutive Model for Elastoplastic Solids Containing Primary and Secondary Voids
,”
J. Mech. Phys. Solids
,
56
(
3
), pp.
719
741
.
26.
Tekoğlu
,
C.
,
Leblond
,
J.
, and
Pardoen
,
T.
,
2012
, “
A Criterion for the Onset of Void Coalescence Under Combined Tension and Shear
,”
J. Mech. Phys. Solids
,
60
(
7
), pp.
1363
1381
.
27.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2014
, “
Effective Yield-Criterion Accounting for Microvoid Coalescence
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031009
.
28.
Morin
,
L.
,
Leblond
,
J.-B.
, and
Benzerga
,
A. A.
,
2015
, “
Coalescence of Voids by Internal Necking: Theoretical Estimates and Numerical Results
,”
J. Mech. Phys. Solids
,
75
, pp.
140
158
.
29.
Torki
,
M. E.
,
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2015
, “
On Void Coalescence Under Combined Tension and Shear
,”
ASME J. Appl. Mech.
,
82
(
7
), p.
071005
.
30.
Torki
,
M. E.
,
Tekoğlu
,
C.
,
Leblond
,
J.-B.
, and
Benzerga
,
A. A.
,
2017
, “
Theoretical and Numerical Analysis of Void Coalescence in Porous Ductile Solids Under Arbitrary Loadings
,”
Int. J. Plast.
,
91
, pp.
160
181
.
31.
Hure
,
J.
, and
Barrioz
,
P.
,
2016
, “
Theoretical Estimates for Flat Voids Coalescence by Internal Necking
,”
Eur. J. Mech. A/Solids
,
60
, pp.
217
226
.
32.
Keralavarma
,
S.
, and
Chockalingam
,
S.
,
2016
, “
A Criterion for Void Coalescence in Anisotropic Ductile Materials
,”
Int. J. Plast.
,
82
, pp.
159
176
.
33.
Morin
,
L.
,
2015
, “
Influence Des Effets de Forme et de Taille Des Cavités, et de L'anisotropie Plastique Sur la Rupture Ductile
,” Ph.D. thesis, Université Pierre et Marie Curie, Paris, France.
34.
Gallican
,
V.
, and
Hure
,
J.
,
2017
, “
Anisotropic Coalescence Criterion for Nanoporous Materials
,”
J. Mech. Phys. Solids
,
108
, pp.
30
48
.
35.
Cao
,
T.
,
Mazière
,
M.
,
Danas
,
K.
, and
Besson
,
J.
,
2015
, “
A Model for Ductile Damage Prediction at Low Stress Triaxialities Incrorporating Void Shape Change and Void Rotation
,”
Int. J. Solids Struct.
,
63
, pp.
240
263
.
36.
Navas
,
V.
,
Bernacki
,
M.
, and
Bouchard
,
P.
,
2018
, “
Void Growth and Coalescence in a Three-Dimensional Non-Periodic Void Cluster
,”
Int. J. Solids Struct.
,
139–140
, pp.
65
78
.
37.
Miehe
,
C.
,
Apel
,
N.
, and
Lambrecht
,
M.
,
2002
, “
Anisotropic Additive Plasticity in the Logarithmic Strain Space: Modular Kinematic Formulation and Implementation Based on Incremental Minimization Principles for Standard Materials
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
47–48
), pp.
5383
5425
.
38.
Koplik
,
J.
, and
Needleman
,
A.
,
1988
, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
,
24
(
8
), pp.
835
853
.
39.
Tekoğlu
,
C.
,
2015
, “
Void Coalescence in Ductile Solids Containing Two Populations of Voids
,”
Eng. Fract. Mech.
,
147
, pp.
418
430
.
40.
Moulinec
,
H.
, and
Suquet
,
P.
,
1998
, “
A Numerical Method for Computing the Overall Response of Nonlinear Composites With Complex Microstructure
,”
Comput. Methods Appl. Mech. Eng.
,
157
(
1–2
), pp.
69
94
.
41.
Paux
,
J.
,
Brenner
,
R.
, and
Kondo
,
D.
,
2018
, “
Plastic Yield Criterion and Hardening of Porous Single Crsytals
,”
Int. J. Solids Struct.
,
132–133
, pp.
80
95
.
42.
Helfer
,
T.
,
Michel
,
B.
,
Proix
,
J.-M.
,
Salvo
,
M.
,
Sercombe
,
J.
, and
Casella
,
M.
,
2015
, “
Introducing the Open-Source Mfront Code Generator: Application to Mechanical Behaviors and Materials Knowledge Management Within the PLEIADES Fuel Element Modelling Platform
,”
Comput. Math. Appl.
,
70
(
5
), pp.
994
1023
.
You do not currently have access to this content.