In the present work, it is intended to discuss how to achieve real-time structural topology optimization (i.e., obtaining the optimized distribution of a certain amount of material in a prescribed design domain almost instantaneously once the objective/constraint functions and external stimuli/boundary conditions are specified), an ultimate dream pursued by engineers in various disciplines, using machine learning (ML) techniques. To this end, the so-called moving morphable component (MMC)-based explicit framework for topology optimization is adopted for generating training set and supported vector regression (SVR) as well as K-nearest-neighbors (KNN) ML models are employed to establish the mapping between the design parameters characterizing the layout/topology of an optimized structure and the external load. Compared with existing approaches, the proposed approach can not only reduce the training data and the dimension of parameter space substantially, but also has the potential of establishing engineering intuitions on optimized structures corresponding to various external loads through the learning process. Numerical examples provided demonstrate the effectiveness and advantages of the proposed approach.

References

References
1.
Prager
,
W.
, and
Rozvany
,
G. I. N.
,
1977
, “
Optimal Layout of Grillages
,”
J. Struct. Mech.
,
5
(
1
), pp.
1
18
.
2.
Cheng
,
K. T.
, and
Olhoff
,
N.
,
1981
, “
An Investigation concerning Optimal Design of Solid Elastic Plate
,”
Int. J. Solids Struct.
,
17
(
3
), pp.
305
323
.
3.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
4.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
.
5.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.
6.
Guo
,
X.
, and
Cheng
,
G. D.
,
2010
, “
Recent Development in Structural Design and Optimization
,”
Acta Mech. Sin
,
26
(
6
), pp.
807
823
.
7.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
8.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscip. Optim.
,
49
(
1
), pp.
1
38
.
9.
Fleury
,
C.
,
2007
, “
Structural Optimization Methods for Large Scale Problems: Status and Limitations
,”
ASME
Paper No. DEC2007-34326.
10.
Aage
,
N.
,
Erik
,
A.
,
Boyan
,
S. L.
, and
Sigmund
,
O.
,
2017
, “
Giga-Voxel Computational Morphogenesis for Structural Design
,”
Nature
,
550
(
7674
), pp.
84
86
.
11.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2009
,
The Elements of Statistical Learning
,
2nd ed.
,
Springer
,
Berlin
.
12.
Christopher
,
M. B.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
Berlin
.
13.
Sebastiani
,
F.
,
2002
, “
Machine Learning in Automated Text Categorization
,”
ACM Comput. Surv.
,
34
(
1
), pp.
1
47
.
14.
Bratko
,
A.
,
Cormack
,
G. V.
,
Filipič
,
B.
,
Lynam
,
T. R.
, and
Zupan
,
B.
,
2006
, “
Spam Filtering Using Statistical Data Compression Models
,”
J. Mach. Learn. Res.
,
7
, pp.
2673
2698
.
15.
Sajda
,
P.
,
2006
, “
Machine Learning for Detection and Diagnosis of Disease
,”
Annu. Rev. Biomed. Eng.
,
8
, pp.
537
565
.
16.
Sosnovik
,
I.
, and
Oseledets
,
I.
,
2017
, “
Neural Networks for Topology Optimization
,” arXiv Preprint arXiv:1709.09578.
17.
Gu
,
G. X.
,
Chen
,
C. T.
, and
Buehler
,
M. J.
,
2018
, “
De Novo Composite Design Based on Machine Learning Algorithm
,”
Extreme Mech. Lett.
,
18
, pp.
19
28
.
18.
Ulu
,
E.
,
Zhang
,
R. S.
, and
Kara
,
L. B.
,
2016
, “
A Data-Driven Investigation and Estimation of Optimal Topologies Under Variable Loading Configurations
,”
Comput. Method Biomech.: Imaging Visualization
,
4
(
2
), pp.
61
72
.
19.
Guo
,
X.
,
Zhang
,
W. S.
, and
Zhong
,
W. L.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically-A New Moving Morphable Components Based Framework
,”
ASME Trans. J. Appl. Mech.
,
81
(
8
), p.
081009
.
20.
Zhang
,
W. S.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
.
21.
Zhang
,
W. S.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
Lagrangian Description Based Topology Optimization-A Revival of Shape Optimization
,”
ASME Trans. J. Appl. Mech.
,
83
(
4
), p.
041010
.
22.
Guo
,
X.
,
Zhang
,
W. S.
,
Zhang
,
J.
, and
Yuan
,
J.
,
2016
, “
Explicit Structural Topology Optimization Based on Moving Morphable Components (MMC) With Curved Skeletons
,”
Comput. Methods Appl. Mechods Eng.
,
310
, pp.
711
748
.
23.
Zhang
,
W. S.
,
Yang
,
W. Y.
,
Zhou
,
J. H.
,
Li
,
D.
, and
Guo
,
X.
,
2017
, “
Structural Topology Optimization Through Explicit Boundary Evolution
,”
ASME Trans. J. Appl. Mech.
,
84
(
1
), p.
011011
.
24.
Zhang
,
W. S.
,
Li
,
D.
,
Yan
,
J.
,
Song
,
J. F.
, and
Guo
,
X.
,
2017
, “
A New Three-Dimensional Topology Optimization Method Based on Moving Morphable Components (MMCs)
,”
Comput. Mech.
,
59
(
4
), pp.
647
665
.
25.
Guo
,
X.
,
Zhou
,
J. H.
,
Zhang
,
W. S.
,
Du
,
Z. L.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
.
26.
Liu
,
C.
,
Du
,
Z. L.
,
Zhang
,
W. S.
,
Zhu
,
Y. C.
, and
Guo
,
X.
,
2017
, “
Additive Manufacturing-Oriented Design of Graded Lattice Structures Through Explicit Topology Optimization
,”
ASME Trans. J. Appl. Mech.
,
84
(
8
), p.
081008
.
27.
Smola
,
A. J.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
28.
Altman
,
N. S.
,
1992
, “
An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression
,”
Am. Stat.
,
46
(
3
), pp.
175
185
.
29.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes-A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
You do not currently have access to this content.