This paper presents B-splines and nonuniform rational B-splines (NURBS)-based finite element method for self-consistent solution of the Schrödinger wave equation (SWE). The new equilibrium position of the atoms is determined as a function of evolving stretching of the underlying primitive lattice vectors and it gets reflected via the evolving effective potential that is employed in the SWE. The nonlinear SWE is solved in a self-consistent fashion (SCF) wherein a Poisson problem that models the Hartree and local potentials is solved as a function of the electron charge density. The complex-valued generalized eigenvalue problem arising from SWE yields evolving band gaps that result in changing electronic properties of the semiconductor materials. The method is applied to indium, silicon, and germanium that are commonly used semiconductor materials. It is then applied to the material system comprised of silicon layer on silicon–germanium buffer to show the range of application of the method.

References

References
1.
Viventi
,
J.
,
Kim
,
D. H.
,
Vigeland
,
L.
,
Frechette
,
E. S.
,
Blanco
,
J. A.
,
Kim
,
Y. S.
,
Wulsin
,
D. F.
,
Rogers
,
J. A.
, and
Litt
,
B.
,
2011
, “
Flexible, Foldable, Actively Multiplexed, High-Density Electrode Array for Mapping Brain Activity In Vivo
,”
Nat. Neurosci.
,
14
(
12
), p.
1599
.
2.
Lu
,
N.
,
Lu
,
C.
,
Yang
,
S.
, and
Rogers
,
J. A.
,
2012
, “
Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers
,”
Adv. Funct. Mater.
,
22
(
19
), pp.
4044
4050
.
3.
Sun
,
Y.
, and
Rogers
,
J. A.
,
2007
, “
Inorganic Semiconductors for Flexible Electronics
,”
Adv. Mater.
,
19
(
15
), pp.
1897
1916
.
4.
Maiti
,
A.
,
2003
, “
Carbon Nanotubes: Bandgap Engineering With Strain
,”
Nat. Mater.
,
2
(
7
), p.
440
.
5.
Pitkethly
,
M. J.
,
2004
, “
Nanomaterials—The Driving Force
,”
Mater. Today
,
7
(
12
), pp.
20
29
.
6.
Chelikowsky
,
J. R.
,
Troullier
,
N.
, and
Saad
,
Y.
,
1994
, “
Finite Difference-Pseudopotential Method: Electronic Structure Calculations Without a Basis
,”
Phys. Rev. Lett.
,
72
(
8
), p.
1240
.
7.
Belytschko
,
T.
, and
Xiao
,
S. P.
,
2003
, “
Coupling Methods for Continuum Model With Molecular Model
,”
Int. J. Multiscale Comput. Eng.
,
1
(
1
), pp.
115
126
.
8.
Liu
,
W. K.
,
Karpov
,
E. G.
,
Zhang
,
S.
, and
Park
,
H. S.
,
2004
, “
An Introduction to Computational Nanomechanics and Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1529
1578
.
9.
Kohn
,
W.
, and
Sham
,
L. J.
,
1965
, “
Self-Consistent Equations Including Exchange and Correlation Effects
,”
Phys. Rev.
,
140
(
4A
), pp.
1133
1138
.
10.
Masud
,
A.
, and
Kannan
,
R.
,
2012
, “
B-Splines and NURBS Based Finite Element Methods for Kohn–Sham Equations
,”
Comput. Methods Appl. Mech. Eng.
,
241
, pp.
112
127
.
11.
Liu
,
B.
,
Jiang
,
H.
,
Johnson
,
H. T.
, and
Huang
,
Y.
,
2004
, “
The Influence of Mechanical Deformation on the Electrical Properties of Single Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
52
(
1
), pp.
1
26
.
12.
Thompson
,
S. E.
,
Sun
,
G.
,
Choi
,
Y. S.
, and
Nishida
,
T.
,
2006
, “
Uniaxial-Process-Induced Strained-Si: Extending the CMOS Roadmap
,”
IEEE Trans. Electron Devices
,
53
(
5
), pp.
1010
1020
.
13.
Masud
,
A.
, and
Kannan
,
R.
,
2009
, “
A Multiscale Framework for Computational Nanomechanics: Application to the Modeling of Carbon Nanotubes
,”
Int. J. Numer. Methods Eng.
,
78
(
7
), pp.
863
882
.
14.
Nogueira
,
F.
,
Castro
,
A.
, and
Marques
,
M. A.
,
2003
, “
A Tutorial on Density Functional Theory
,”
A Primer in Density Functional Theory
,
Springer
,
Berlin
, pp.
218
256
.
15.
Martin
,
R. M.
,
2004
,
Electronic Structure: Basic Theory and Practical Methods
,
Cambridge University Press
, Cambridge, UK.
16.
Singh
,
D. J.
, and
Nordström
,
L.
,
2006
,
Planewaves Pseudopotentials and the LAPW Method
,
Springer
,
New York
.
17.
Gavini
,
V.
,
Bhattacharya
,
K.
, and
Ortiz
,
M.
,
2007
, “
Quasi-Continuum Orbital-Free Density-Functional Theory: A Route to Multi-Million Atom Non-Periodic DFT Calculation
,”
J. Mech. Phys. Solids
,
55
(
4
), pp.
697
718
.
18.
Gavini
,
V.
,
Knap
,
J.
,
Bhattacharya
,
K.
, and
Ortiz
,
M.
,
2007
, “
Non-Periodic Finite-Element Formulation of Orbital-Free Density Functional Theory
,”
J. Mech. Phys. Solids
,
55
(
4
), pp.
669
696
.
19.
Suryanarayana
,
P.
,
Gavini
,
V.
,
Blesgen
,
T.
,
Bhattacharya
,
K.
, and
Ortiz
,
M.
,
2010
, “
Non-Periodic Finite-Element Formulation of Kohn–Sham Density Functional Theory
,”
J. Mech. Phys. Solids
,
58
(
2
), pp.
256
280
.
20.
Hughes
,
T. J.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
21.
Pask
,
J. E.
,
Klein
,
B. M.
,
Sterne
,
P. A.
, and
Fong
,
C. Y.
,
2001
, “
Finite-Element Methods in Electronic-Structure Theory
,”
Comput. Phys. Commun.
,
135
(
1
), pp.
1
34
.
22.
Pask
,
J. E.
, and
Sterne
,
P. A.
,
2005
, “
Finite Element Methods in Ab Initio Electronic Structure Calculations
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
3
), p.
R71
.
23.
Pask
,
J. E.
, and
Sterne
,
P. A.
,
2005
, “
Real-Space Formulation of the Electrostatic Potential and Total Energy of Solids
,”
Phys. Rev. B
,
71
(
11
), p.
113101
.
24.
Chelikowsky
,
J. R.
,
Troullier
,
N.
,
Wu
,
K.
, and
Saad
,
Y.
,
1994
, “
Higher-Order Finite Difference Pseudopotential Method: An Application to Diatomic Molecules
,”
Phys. Rev. B
,
50
(
16
), p.
11355
.
25.
Pickett
,
W. E.
,
1989
, “
Pseudopotential Methods in Condensed Matter Applications
,”
Comput. Phys. Rep.
,
9
(
3
), pp.
115
197
.
26.
Piegl
,
L.
, and
Tiller
,
W.
,
1997
,
The NURBS Book
,
Springer, New York
.
27.
Masud
,
A.
,
2005
, “
A 3-D Model of Cold Drawing in Engineering Thermoplastics
,”
Mech. Adv. Mater. Struct.
,
12
(
6
), pp.
457
469
.
28.
Masud
,
A.
,
2000
, “
A Multiplicative Finite Strain Finite Element Framework for the Modelling of Semicrystalline Polymers and Polycarbonates
,”
Int. J. Numer. Methods Eng.
,
47
(
11
), pp.
1887
1908
.
29.
Masud
,
A.
,
Truster
,
T. J.
, and
Bergman
,
L. A.
,
2011
, “
A Variational Multiscale a Posteriori Error Estimation Method for Mixed Form of Nearly Incompressible Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
47–48
), pp.
3453
3481
.
30.
Masud
,
A.
, and
Calderer
,
R.
,
2011
, “
A Variational Multiscale Method for Incompressible Turbulent Flows: Bubble Functions and Fine Scale Fields
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
33–36
), pp.
2577
2593
.
31.
Masud
,
A.
, and
Truster
,
T. J.
,
2013
, “
A Framework for Residual-Based Stabilization of Incompressible Finite Elasticity: Stabilized Formulations and F-Bar Methods for Linear Triangles and Tetrahedra
,”
Comput. Methods Appl. Mech. Eng.
,
267
, pp.
359
399
.
32.
Gullett
,
P. M.
,
Horstemeyer
,
M. F.
,
Baskes
,
M. I.
, and
Fang
,
H.
,
2007
, “
A Deformation Gradient Tensor and Strain Tensors for Atomistic Simulations
,”
Modell. Simul. Mater. Sci. Eng.
,
16
(
1
), p.
015001
.
33.
Cormier
,
J.
,
Rickman
,
J. M.
, and
Delph
,
T. J.
,
2001
, “
Stress Calculation in Atomistic Simulations of Perfect and Imperfect Solids
,”
J. Appl. Phys.
,
89
(
7
), pp.
99
104
.
34.
Kannan
,
R.
, and
Masud
,
A.
,
2009
, “
Stabilized Finite Element Methods for the Schrödinger Wave Equation
,”
ASME J. Appl. Mech.
,
76
(
2
), p.
021203
.
35.
Richard
,
S.
,
Aniel
,
F.
,
Fishman
,
G.
, and
Cavassilas
,
N.
,
2003
, “
Energy-Band Structure in Strained Silicon: A 20-Band k⋅p and Bir–Pikus Hamiltonian Model
,”
J. Appl. Phys.
,
94
(
3
), pp.
1795
1799
.
36.
Sakata
,
K.
,
Magyari-Köpe
,
B.
,
Gupta
,
S.
,
Nishi
,
Y.
,
Blom
,
A.
, and
Deák
,
P.
,
2016
, “
The Effects of Uniaxial and Biaxial Strain on the Electronic Structure of Germanium
,”
Comput. Mater. Sci.
,
112
, pp.
263
268
.
37.
Hiemstra, R. R., Calabro, F., Schillinger, D., and Hughes, T. J., 2017, “Optimal and Reduced Quadrature Rules for Tensor Product and Hierarchically Refined Splines in Isogeometric Analysis,”
Comput. Methods Appl. Mech. Eng.
, 316, pp. 966–1004.
38.
Chermette
,
H.
,
1998
, “
Density Functional Theory: A Powerful Tool for Theoretical Studies in Coordination Chemistry
,”
Coord. Chem. Rev.
,
178
, pp.
699
721
.
39.
Monkhorst
,
H. J.
, and
Pack
,
J. D.
,
1976
, “
Special Points for Brillouin-Zone Integrations
,”
Phys. Rev. B
,
13
(
12
), p.
5188
.
40.
Hartwigsen
,
C.
,
Gœdecker
,
S.
, and
Hutter
,
J.
,
1998
, “
Relativistic Separable Dual-Space Gaussian Pseudopotentials From H to Rn
,”
Phys. Rev. B
,
58
(
7
), p.
3641
.
41.
Perdew
,
J. P.
, and
Wang
,
Y.
,
1992
, “
Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy
,”
Phys. Rev. B
,
45
(
23
), p.
13244
.
42.
Smith
,
C. S.
,
1954
, “
Piezoresistance Effect in Germanium and Silicon
,”
Phys. Rev.
,
94
(
1
), p.
42
.
You do not currently have access to this content.