The whole peeling behavior of thin films on substrates attract lots of research interests due to the wide application of film-substrate systems, which was well modeled theoretically by introducing Lennard–Jones (L-J) potential to describe the interface in Peng and Chen (2015, Effect of Bending Stiffness on the Peeling Behavior of an Elastic Thin Film on a Rigid Substrate,” Phys. Rev. E, 91(4), p. 042401). However, it is difficult for real applications because the parameters in the L-J potential are difficult to determine experimentally. In this paper, with the help of the peeling test and combining the constitutive relation of a cohesive zone model (CZM) with the L-J potential, we establish a new method to find the parameters in the L-J potential. The whole peeling process can then be analyzed quantitatively. Both the theoretical prediction and the experimental result agree well with each other. Finite element simulations of the whole peeling process are carried out subsequently. Quantitative agreements among the theoretical prediction, numerical calculation, and the experiment measurement further demonstrate the feasibility of the method. Effects of not only the interface strength but also the interface toughness on the whole peeling behavior are analyzed. It is found that the peeling force at a peeling angle of 90 deg during the steady-state stage is affected only by the interface toughness, while the peeling force before the steady-state stage would be influenced significantly by the interface toughness, interface strength, and bending stiffness of the film. All the present results should be helpful for deep understanding and theoretical prediction of the interface behavior of film-substrate systems in real applications.

References

References
1.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.
2.
Carlson
,
A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2012
, “
Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication
,”
Adv. Mater.
,
24
(
39
), pp.
5284
5318
.
3.
Persson
,
B. N. J.
, and
Gorb
,
S.
,
2003
, “
The Effect of Surface Roughness on the Adhesion of Elastic Plates With Application to Biological Systems
,”
J. Chem. Phys.
,
119
(
21
), pp.
11437
11444
.
4.
Spies
,
G.
,
1953
, “
The Peeling Test on Redux-Bonded Joints: A Theoretical Analysis of the Test Devised by Aero Research Limited
,”
Aircr. Eng. Aerosp. Technol.
,
25
(
3
), pp.
64
70
.
5.
Wei
,
Y.
,
2004
, “
Modeling Nonlinear Peeling of Ductile Thin Films—Critical Assessment of Analytical Bending Models Using FE Simulations
,”
Int. J. Solids Struct.
,
41
(
18–19
), pp.
5087
5104
.
6.
Williams
,
J. G.
,
1993
, “
Root Rotation and Plastic Work Effects in the Peel Test
,”
J. Adhes.
,
41
(
1–4
), pp.
225
239
.
7.
Wei
,
Y.
, and
Zhao
,
H.
,
2008
, “
Peeling Experiments of Ductile Thin Films Along Ceramic Substrates—Critical Assessment of Analytical Models
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3779
3792
.
8.
Zhao
,
H.
, and
Wei
,
Y.
,
2007
, “
Determination of Interface Properties Between Micron-Thick Metal Film and Ceramic Substrate Using Peel Test
,”
Int. J. Fract.
,
144
(
2
), pp.
103
112
.
9.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling-the Elastic Term
,”
J. Phys. D
,
8
(
13
), p.
1449
.
10.
Wei
,
Y.
, and
Hutchinson
,
J. W.
,
1998
, “
Interface Strength, Work of Adhesion and Plasticity in the Peel Test
,”
Int. J. Fract.
,
93
(
1
), p.
315
.
11.
Kim
,
J.
,
Kim
,
K. S.
, and
Kim
,
Y. H.
,
1989
, “
Mechanical Effects in Peel Adhesion Test
,”
J. Adhes. Sci. Technol.
,
3
(
1
), pp.
175
187
.
12.
Yang
,
Q. D.
,
Thouless
,
M. D.
, and
Ward
,
S. M.
,
1999
, “
Numerical Simulations of Adhesively-Bonded Beams Failing With Extensive Plastic Deformation
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1337
1353
.
13.
Cheng
,
H.
,
2013
, “
A Viscoelastic Model for the Rate Effect in Transfer Printing
,”
ASME J. Appl. Mech.
,
80
(
4
), pp.
369
384
.
14.
Peng
,
Z.
,
Wang
,
C.
,
Chen
,
L.
, and
Chen
,
S.
,
2014
, “
Peeling Behavior of a Viscoelastic Thin-Film on a Rigid Substrate
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4596
4603
.
15.
Xia
,
S. M.
,
Ponson
,
L.
,
Ravichandran
,
G.
, and
Bhattacharya
,
K.
,
2013
, “
Adhesion of Heterogeneous Thin Films—I: Elastic Heterogeneity
,”
J. Mech. Phys. Solids
, 61(3), pp. 838–851.
16.
Peng
,
Z.
,
Wang
,
C.
,
Yang
,
Y.
, and
Chen
,
S.
,
2016
, “
Effect of Relative Humidity on the Peeling Behavior of a Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
94
(
3–1
), p.
032801
.
17.
Peng
,
Z.
, and
Chen
,
S.
,
2012
, “
Effect of Pre-Tension on the Peeling Behavior of a Bio-Inspired Nano-Film and a Hierarchical Adhesive Structure
,”
Appl. Phys. Lett.
,
101
(
16
), p.
163702
.
18.
Afferrante
,
L.
, and
Carbone
,
G.
,
2016
, “
The Ultratough Peeling of Elastic Tapes From Viscoelastic Substrates
,”
J. Mech. Phys. Solids
,
96
, pp.
223
234
.
19.
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2011
, “
Effects of Surface Roughness and Film Thickness on the Adhesion of a Bioinspired Nanofilm
,”
Phys. Rev. E
,
83
(5), p.
051915
.
20.
Chen
,
H.
,
Feng
,
X.
,
Huang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2013
, “
Experiments and Viscoelastic Analysis of Peel Test With Patterned Strips for Applications to Transfer Printing
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1737
1752
.
21.
Oyharcabal
,
X.
, and
Frisch
,
T.
,
2005
, “
Peeling Off an Elastica From a Smooth Attractive Substrate
,”
Phys. Rev. E
,
71
(
3
), p.
036611
.
22.
Peng
,
Z.
, and
Chen
,
S.
,
2015
, “
Effect of Bending Stiffness on the Peeling Behavior of an Elastic Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
91
(
4
), p. 042401.
23.
Liang
,
L. H.
,
Wei
,
H.
,
Li
,
X. N.
, and
Wei
,
Y. G.
,
2013
, “
Size-Dependent Interface Adhesive Energy and Interface Strength of Nanostructured Systems
,”
Surf. Coat. Technol.
,
236
(
2
), pp.
525
530
.
24.
Li
,
X. N.
,
Liang
,
L. H.
,
Xie
,
J. J.
,
Chen
,
L.
, and
Wei
,
Y. G.
,
2014
, “
Thickness-Dependent Fracture Characteristics of Ceramic Coatings Bonded on the Alloy Substrates
,”
Surf. Coat. Technol.
,
258
, pp.
1039
1047
.
25.
Sauer
,
R. A.
, and
Wriggers
,
P.
,
2009
, “
Formulation and Analysis of a Three-Dimensional Finite Element Implementation for Adhesive Contact at the Nanoscale
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
49–52
), pp.
3871
3883
.
26.
Sauer
,
R. A.
,
2011
, “
The Peeling Behavior of Thin Films With Finite Bending Stiffness and the Implications on Gecko Adhesion
,”
J. Adhes.
,
87
(
7–8
), pp.
624
643
.
27.
Lane
,
M.
,
Dauskardt
,
R. H.
,
Vainchtein
,
A.
, and
Gao
,
H.
,
2000
, “
Plasticity Contributions to Interface Adhesion in Thin-Film Interconnect Structures
,”
J. Mater. Res.
,
15
(
12
), pp.
2758
2769
.
28.
Högberg
,
J. L.
,
2006
, “
Mixed Mode Cohesive Law
,”
Int. J. Fract.
,
141
(
3–4
), pp.
549
559
.
29.
Camanho
,
P. P.
,
Davila
,
C. G.
, and
de Moura
,
M. F.
,
2003
, “
Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials
,”
J. Compos. Mater.
,
37
(
16
), pp.
1415
1438
.
30.
Williams
,
J. G.
, and
Hadavinia
,
H.
,
2002
, “
Analytical Solutions for Cohesive Zone Models
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
809
825
.
31.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
You do not currently have access to this content.