Micromechanics models of fiber kinking provide insight into the compressive failure mechanism of fiber reinforced composites, but are computationally inefficient in capturing the progressive damage and failure of the material. A homogenized model is desirable for this purpose. Yet, if a proper length scale is not incorporated into the continuum, the resulting implementation becomes mesh dependent when a numerical approach is used for computation. In this paper, a micropolar continuum is discussed to characterize the compressive failure of fiber composites dominated by kinking. Kink banding is an instability associated with a snap-back behavior in the load–displacement response, leading to the formation of a finite region of localized deformation. The challenge in modeling this mode of failure is the inherent geometric and matrix material nonlinearity that must be considered. To overcome the mesh dependency of numerical results, a length scale is naturally introduced when modeling the composite as a micropolar continuum. A new approach is presented to approximate the effective transversely isotropic micropolar constitutive relation of a fiber composite. Using an updated Lagrangian, nonlinear finite element code, previously developed for incorporating the additional rotational degrees-of-freedom (DOFs) of micropolar theory, the simulation of localized deformation in a continuum model, corresponding to fiber kinking, is demonstrated and is found to be comparable with the micromechanics simulation results. Most importantly, the elusive kink band width is a natural outcome of the continuum model.

References

References
1.
Kyriakides
,
S.
,
Arseculeratne
,
R.
,
Perry
,
E. J.
, and
Liechti
,
K. M.
,
1995
, “
On the Compressive Failure of Fiber Reinforced Composites
,”
Int. J. Solids Struct.
,
32
(
6–7
), pp.
689
738
.
2.
Yerramalli
,
C. S.
, and
Waas
,
A. M.
,
2004
, “
The Effect of Fiber Diameter on the Compressive Strength of Composites—A 3D Finite Element Based Study
,”
Comput. Model. Eng. Sci.
,
6
(
1
), pp.
1
16
.
3.
Kwon
,
Y. W.
, and
Berner
,
J. M.
,
1995
, “
Micromechanics Model for Damage and Failure Analyses of Laminated Fibrous Composites
,”
Eng. Fract. Mech.
,
52
(
2
), pp.
231
242
.
4.
Li
,
V. C.
,
Wang
,
Y.
, and
Backe
,
S.
,
1991
, “
A Micromechanical Model of Tension-Softening and Bridging Toughening of Short Random Fiber Reinforced Brittle Matrix Composites
,”
J. Mech. Phys. Solids
,
39
(
5
), pp.
607
625
.
5.
Bažant
,
Z. P.
, and
Belytschko
,
T. B.
,
1984
, “
Continuum Theory for Strain Softening
,”
J. Eng. Mech.
,
110
(
12
), pp.
1666
1692
.
6.
Lasry
,
D.
, and
Belytschko
,
T.
,
1988
, “
Localization Limiters in Transient Problems
,”
Int. J. Solids Struct.
,
24
(
6
), pp.
581
597
.
7.
Triantafyllidis
,
N.
, and
Aifantis
,
E. C.
,
1986
, “
A Gradient Approach to Localization of Deformation. I. hyperelastic Materials
,”
J. Elasticity
,
16
(
3
), pp.
225
237
.
8.
De Borst
,
R.
,
1991
, “
Simulation of Strain Localization: A Reappraisal of the Cosserat Continuum
,”
Eng. Comput.
,
8
(
4
), pp.
317
332
.
9.
Kafadar
,
C. B.
, and
Eingen
,
A. C.
,
1971
, “
Micropolar Media—I: the Classical Theory
,”
Int. J. Eng. Sci.
,
9
(
3
), pp.
271
305
.
10.
Steigmann
,
D. J.
,
2012
, “
Theory of Elastic Solids Reinforced With Fibers Resistant to Extension, Flexure and Twist
,”
Int. J. Non-Linear Mech.
,
47
(
7
), pp.
734
742
.
11.
Steigmann
,
D. J.
,
2015
, “
Effects of Fiber Bending and Twisting Resistance on the Mechanics of Fiber-Reinforced Elastomers
,”
Nonlinear Mech. Soft Fibrous Mater.
,
559
, pp.
269
305
.
12.
Fleck
,
N. A.
, and
Shu
,
J. Y.
,
1995
, “
Microbuckle Initiation in Fiber Composites: A Finite Element Study
,”
J. Mech. Phys. Solids
,
43
(
12
), pp.
1887
1918
.
13.
Sørensen
,
K. D.
,
Mikkelsen
,
L. P.
, and
Jensen
,
H. M.
, eds.,
2007
, “
On the Simulation of Kink Bands in Fiber Reinforced Composites
,”
28th Risø International Symposium on Materials Science: Interface Design of Polymer Matrix Composites—Mechanics, Chemistry, Modelling and Manufacturing
, Risø, Denmark, pp. 281–288.http://orbit.dtu.dk/files/3699447/2008_46.pdf
14.
Sørensen
,
K. D.
,
Mikkelsen
,
L. P.
, and
Jensen
,
H. M.
, eds.,
2009
, “
User Subroutine for Compressive Failure of Composites
,”
Simulia Customer Conference
, pp. 1–15.http://www.simulia.com/download/scc-papers/Energy/user-subroutine-compressive-failure-of-composites-2009-F.pdf
15.
Prabhakar
,
P.
, and
Waas
,
A. M.
,
2013
, “
Upscaling From a Micro-Mechanics Model to Capture Laminate Compressive Strength Due to Kink Banding Instability
,”
Comput. Mater. Sci.
,
67
, pp.
40
47
.
16.
Ostoja-Starzewski
,
M.
,
2008
,
Microstructural Randomness and Scaling in Mechanic of Materials
,
Chapman and Hall
,
London
, Chap. 6.
17.
Christensen
,
R. M.
,
1979
,
Mechanics of Composite Materials
,
Wiley
,
New York
. pp.
80
83
.
18.
Zhang
,
D.
, and
Waas
,
A. M.
,
2014
, “
A Micromechanics Based Multiscale Model for Nonlinear Composites
,”
Acta Mech.
,
225
(
4–5
), pp.
1391
1417
.
19.
Patel
,
D. K.
,
Hasanyan
,
A. D.
, and
Waas
,
A. M.
,
2016
, “
N-Layer Concentric Cylinder Model (NCYL): An Extended Micromechanics-Based Multiscale Model for Nonlinear Composites
,”
Acta Mech.
,
228
(
1
), pp.
275
306
.
20.
Onck
,
P. R.
,
2002
, “
Cosserat Modeling of Cellular Solids
,”
C. R. Méc.
,
330
(
11
), pp.
717
722
.
21.
Trovalusci
,
P.
,
Ostoja-Starzewski
,
M.
,
De Bellis
,
M. L.
, and
Murrali
,
A.
,
2015
, “
Scale-Dependent Homogenization of Random Composites as Micropolar Continua
,”
Eur. J. Mech.-A/Solids
,
49
, pp.
396
407
.
22.
Forest
,
S.
, and
Sab
,
K.
,
1998
, “
Cosserat Overall Modeling of Heterogeneous Materials
,”
Mech. Res. Commun.
,
25
(
4
), pp.
449
454
.
23.
De Bellis
,
M. L.
, and
Addessi
,
D.
,
2011
, “
A Cosserat Based Multi-Scale Model for Masonry Structures
,”
Int. J. Multiscale Comput. Eng.
,
9
(
5
), pp.
543
563
.
24.
Lee
,
S. H.
, and
Waas
,
A. M.
,
1999
, “
Compressive Response and Failure of Fiber Reinforced Unidirectional Composites
,”
Int. J. Fract.
,
100
(
3
), pp.
275
306
.
25.
Hsu
,
S. Y.
,
Vogler
,
T. J.
, and
Kyriakides
,
S.
,
1998
, “
Compressive Strength Predictions for Fiber Composites
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
7
16
.
26.
Davidson
,
P.
, and
Waas
,
A. M.
,
2016
, “
Mechanics of Kinking in Fiber-Reinforced Composites Under Compressive Loading
,”
Math. Mech. Solids
,
21
(
6
), pp.
667
684
.
27.
NG
,
W. H.
,
Salvi
,
A. G.
, and
Waas
,
A. M.
,
2010
, “
Characterization of the in-Situ Non-Linear Shear Response of Laminated Fiber-Reinforced Composites
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1126
1134
.
28.
Alsaleh
,
M. I.
,
Voyiadjis
,
G. Z.
, and
Alshibli
,
K. A.
,
2006
, “
Modelling Strain Localization in Granular Materials Using Micropolar Theory: Mathematical Formulations
,”
Int. J. Numer. Anal. Methods Geomech.
,
30
(
15
), pp.
1501
1524
.
29.
Ramezani
,
S.
,
Naghdabadi
,
R.
, and
Sohrabpour
,
S.
,
2008
, “
Non-Linear Finite Element Implementation of Micropolar Hypo-Elastic Materials
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
49–50
), pp.
4149
4159
.
30.
Schultheisz
,
C. R.
, and
Waas
,
A. M.
,
1996
, “
Compressive Failure of Composites—Part I: Testing and Micromechanical Theories
,”
Prog. Aerosp. Sci.
,
32
(
1
), pp.
1
42
.
You do not currently have access to this content.